[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 8, Issue 2 (2022) ::
Sustainable Aquaculture. Health. Management. J. 2022, 8(2): 1-19 Back to browse issues page
Review Article: An overview of climate change and prevalence of bacterial diseases in salmonid aquaculture
A Marandi , A Fakhri Demeshghieh , P Almasi, M Bashiri, M Soltani *
Abstract:   (126 Views)

Food fish farming is regarded as one of the most important sectors of the aquaculture industry. Salmon farming is a major contributor to the growth of the aquaculture sector. Climate change is predicted to have a complex impact on aquatic ecosystems, including fisheries and aquaculture. Climate change can cause a fluctuation in water temperature of rivers, lakes, seas, and oceans. This can change the pattern of ocean currents and marine productivity to be redistributed, especially to higher latitudes, and reduce the global concentration of phytoplanktons, increasing ocean acidity, creating deoxygenated zones, and inducing episodic shocks to marine systems. However, the impact of climate change on fish health is not limited to the physical changes in the environment. A change in climate can also influence the incidence of infectious diseases by shortening generation times and/or increasing the survival rates of the pathogenic agents, improving disease transmission, and enhancing the host's susceptibility to the pathogens. The actual impact of climate change on infectious diseases, particularly those caused by bacterial agents, is not fully understood in both wild and captured fish species. This review addressed the impact of climate change on outbreaks of salmonid bacterial diseases and discuss the present gaps.

Keywords: Climate change, Fish health, Temperature, Bacterial disease
Full-Text [PDF 557 kb]   (46 Downloads)    
Type of Study: Review papers | Subject: Bacterial Disease
Received: 2022/09/6 | Accepted: 2022/11/7 | Published: 2022/11/11
1. A El-Noby, G., Hassanin, M., El-Hady, M. and Aboshabana, S., 2021. Streptococcus: A review article on an emerging pathogen of farmed fishes. Egyptian Journal of Aquatic Biology and Fisheries, 25(1), 123-139. [DOI:10.21608/ejabf.2021.138469]
2. Abirami, B., Radhakrishnan, M., Kumaran, S. and Wilson, A., 2021. Impacts of global warming on marine microbial communities. Science of The Total Environment, 791, 147905. [DOI:10.1016/j.scitotenv.2021.147905] [PMID]
3. Albert, V. and Ransangan, J., 2013. Effect of water temperature on susceptibility of culture marine fish species to vibriosis. International Journal of Research in Pure and Applied Microbiology, 3(3), 48-52.
4. Avendaño-Herrera, R., Toranzo, A. E. and Magariños, B., 2006. Tenacibaculosis infection in marine fish caused by Tenacibaculum maritimum: a review. Diseases of aquatic organisms, 71(3), 255-266. [DOI:10.3354/dao071255] [PMID]
5. Bateman, A. W., Teffer, A. K., Bass, A., Ming, T., Kaukinen, K., Hunt, B. P., Krkošek, M. and Miller, K. M., 2022. Atlantic salmon farms are a likely source of Tenacibaculum maritimum infection in migratory Fraser River sockeye salmon. Canadian Journal of Fisheries and Aquatic Sciences, 99(999), 1-16. [DOI:10.1139/cjfas-2021-0164]
6. Bernardet, J. F., 1989. France and comparison with bacterial strains from other origins. Diseases of Aquatic Organisms, 6, 37-44. [DOI:10.3354/dao006037]
7. Branson, E. and Diaz‐munoz, D. N., 1991. Description of a new disease condition occurring in farmed coho salmon, Oncorhynchus kisutch (Walbaum), in South America. Journal of fish diseases, 14(2), 147-156. [DOI:10.1111/j.1365-2761.1991.tb00585.x]
8. Brosnahan, C. L., Munday, J. S., Ha, H. J., Preece, M. and Jones, J. B., 2019. New Zealand rickettsia‐like organism (NZ‐RLO) and Tenacibaculum maritimum: distribution and phylogeny in farmed Chinook salmon (Oncorhynchus tshawytscha). Journal of fish diseases, 42(1), 85-95. [DOI:10.1111/jfd.12909] [PMID]
9. Butler, C., (Ed.) 2016. Climate change and global health. CABI.
10. Cain, K. D. and LaFrentz, B. R., 2007. Laboratory maintenance of Flavobacterium psychrophilum and Flavobacterium columnare. Current protocols in microbiology, 6(1), 13B-1. [DOI:10.1002/9780471729259.mc13b01s6] [PMID]
11. Carriero, M., Mendes Maia, A., Moro Sousa, R. and Henrique‐Silva, F., 2016. Characterization of a new strain of Aeromonas dhakensis isolated from diseased pacu fish (Piaractus mesopotamicus) in Brazil. Journal of fish diseases, 39(11), 1285-1295. [DOI:10.1111/jfd.12457] [PMID]
12. Carrizo, V., Valenzuela, C.A., Aros, C., Dettleff, P., Valenzuela-Muñoz, V., Gallardo-Escarate, C., Altamirano, C., Molina, A. and Valdés, J.A., 2021. Transcriptomic analysis reveals a Piscirickettsia salmonis-induced early inflammatory response in rainbow trout skeletal muscle. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 39, p.100859. [DOI:10.1016/j.cbd.2021.100859] [PMID]
13. Chen, C., Zou, W., Cui, G., Tian, J., Wang, Y. and Ma, L., 2020. Ecological risk assessment of current-use pesticides in an aquatic system of Shanghai, China. Chemosphere, 257, 127222. [DOI:10.1016/j.chemosphere.2020.127222] [PMID]
14. Cheung, W. W. and Frölicher, T. L., 2020. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Scientific reports, 10(1), 1-10. [DOI:10.1038/s41598-020-63650-z] [PMID] [PMCID]
15. Cheung, W. W., Frölicher, T. L., Lam, V. W., Oyinlola, M. A., Reygondeau, G., Sumaila, U. R., Tai, T.C., Teh, L.C. and Wabnitz, C. C., 2021. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Science Advances, 7(40), eabh0895. [DOI:10.1126/sciadv.abh0895] [PMID]
16. Chiaramonte, L., Munson, D. and Trushenski, J., 2016. Climate change and considerations for fish health and fish health professionals. Fisheries, 41(7), 396-399. [DOI:10.1080/03632415.2016.1182508]
17. Collins, C., Bresnan, E., Brown, L., Falconer, L., Guilder, J., Jones, L., Kennerley, A., Malham, S., Murray A. and Stanley, M., 2020. Impacts of climate change on aquaculture. MCCIP Science Review 2020, 482-520. [DOI:10.14465/2020.arc21.aqu]
18. Cusack, R. R., Groman, D. B. and Jones, S. R., 2002. Rickettsial infection in farmed Atlantic salmon in eastern Canada. The Canadian Veterinary Journal, 43(6), 435.
19. Cvitanich, J., Garate, O., and Smith, C., 1990. Etiological agent in a Chilean coho disease isolated and confirmed by Koch's postulates. FHS/AFS Newsletter, 18, 1-2.
20. Dar, G. H., Bhat, R. A., Qadri, H., Al-Ghamdi, K. M. and Hakeem, K., 2022. Bacterial Fish Diseases. Elsevier.
21. Declercq, A. M., Chiers, K., Haesebrouck, F., Van Den Broeck, W., Dewulf, J., Cornelissen, M. and Decostere, A., 2015. Gill infection model for columnaris disease in common carp and rainbow trout. Journal of aquatic animal health, 27(1), 1-11. [DOI:10.1080/08997659.2014.953265] [PMID]
22. Delghandi, M. R., El-Matbouli, M. and Menanteau-Ledouble, S., 2020a. Renibacterium salmoninarum-The causative agent of bacterial kidney disease in salmonid fish. Pathogens, 9(10), 845. [DOI:10.3390/pathogens9100845] [PMID] [PMCID]
23. Delghandi, M. R., Menanteau-Ledouble, S., Waldner, K. and El-Matbouli, M., 2020b. Renibacterium salmoninarum and Mycobacterium spp.: Two bacterial pathogens present at low levels in wild brown trout (Salmo trutta fario) populations in Austrian rivers. BMC veterinary research, 16(1), 1-12. [DOI:10.1186/s12917-020-2260-7] [PMID] [PMCID]
24. Dias, M. K., Sampaio, L. S., Proietti-Junior, A. A., Yoshioka, E. T., Rodrigues, D. P., Rodriguez, A. F., Ribeiro, R. A., Faria, F. S., Ozório, R. O. and Tavares-Dias, M., 2016. Lethal dose and clinical signs of Aeromonas hydrophila in Arapaima gigas (Arapaimidae), the giant fish from Amazon. Veterinary microbiology, 188, 12-15. [DOI:10.1016/j.vetmic.2016.04.001] [PMID]
25. Downes, J., Yatabe, T., Marcos‐Lopez, M., Rodger, H., MacCarthy, E., O'Connor, I., Collins, E. and Ruane, N., 2018. Investigation of co‐infections with pathogens associated with gill disease in Atlantic salmon during an amoebic gill disease outbreak. Journal of fish diseases, 41(8), 1217-1227. [DOI:10.1111/jfd.12814] [PMID]
26. Eftekharmanavi, S., Peyghan, R., Soltani, M., & Ghorbanpoor najafabadi, M., 2020. Investigation on protective effect of recombinant protein (OmpTS) of Aeromonas hydrophila in Common carp (Cyprinus carpio). Aquaculture Research, 51(9), 3479-3487. [DOI:10.1111/are.14682]
27. Evenhuis, J. P., LaPatra, S. E. and Marancik, D., 2014. Early life stage rainbow trout (Oncorhynchus mykiss) mortalities due to Flavobacterium columnare in Idaho, USA. Aquaculture, 418, 126-131. [DOI:10.1016/j.aquaculture.2013.09.044]
28. FAO. 2014. The State of World Fisheries and Aquaculture (Sofia) 2014. Available: http://www.fao.org/documents/card/en/c/097d8007-49a4-4d65-88cd-fcaf6a969776/.
29. FAO. 2019. Fishery and Aquaculture Statistics. Global aquaculture production 1950-2017 (FishstatJ). Available: http://www.fao.org/fishery/statistics/software/fishstatj/en.
30. Farmer, B. D., Fuller, S. A., Beck, B. H., Abernathy, J. W., Lange, M. D. and Webster, C. D., 2021. Differential susceptibility of white bass (Morone chrysops), striped bass (Morone saxatilis) and hybrid striped bass (M. chrysops× M. saxatilis) to Flavobacterium columnare and effects of mucus on bacterial growth and biofilm development. Journal of Fish Diseases, 44(2), 161-169. [DOI:10.1111/jfd.13272] [PMID]
31. Frisch, K., Småge, S. B., Brevik, Ø. J., Duesund, H. and Nylund, A., 2018. Genotyping of Tenacibaculum maritimum isolates from farmed Atlantic salmon in Western Canada. Journal of fish diseases, 41(1), 131-137. [DOI:10.1111/jfd.12687] [PMID]
32. Fryer, J., Lannan, C., Garces, L., Larenas, J. and Smith, P., 1990. Isolation of a rickettsiales-like organism from diseased coho salmon (Oncorhynchus kisutch) in Chile. Fish Pathology, 25(2), 107-114. [DOI:10.3147/jsfp.25.107]
33. Fuentes, D. E., Acuña, L. G. and Calderón, I. L., 2022. Stress response and virulence factors in bacterial pathogens relevant for Chilean aquaculture: current status and outlook of our knowledge. Biological Research, 55(1), 1-9. [DOI:10.1186/s40659-022-00391-5] [PMID] [PMCID]
34. Galappaththi, E. K., Susarla, V. B., Loutet, S. J., Ichien, S. T., Hyman, A. A. and Ford, J. D., 2022. Climate change adaptation in fisheries. Fish and Fisheries, 23(1), 4-21. [DOI:10.1111/faf.12595]
35. Gomez-Gil, B., Thompson, C. C., Matsumura, Y., Sawabe, T., Iida, T., Christen, R., Thompson, F. and Sawabe, T., 2014. The Famlily Vibrionaceae. In: The Prokaryotes: Gammaproteobacteria, in: Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E. and Thompson, F. (Eds.), Springer Berlin Heidelberg, pp. 659-747. [DOI:10.1007/978-3-642-38922-1_225]
36. Gratacap, R. M., 2008. Characterisation of Vibrio anguillarum for the development of vaccine in cod (Gadus morhua).
37. Haghighi Karsidani, S., Soltani, M., Nikbakhat-Brojeni, G., Ghasemi, M., & Skall, H. F., 2010. Molecular epidemiology of zoonotic streptococcosis/lactococcosis in rainbow trout (Oncorhynchus mykiss) aquaculture in Iran. Iranian journal of microbiology, 2(4), 198.
38. Harrison, C. E., Knupp, C. K., Brenden, T. O., Ebener, M. P. and Loch, T. P., 2022. First isolation of Flavobacterium psychrophilum from wild adult great lake whitefish (Coregonus clupeaformis). Journal of Fish Diseases. [DOI:10.1111/jfd.13626] [PMID] [PMCID]
39. Hashish, E., Merwad, A., Elgaml, S., Amer, A., Kamal, H., Elsadek, A., Marei, A. and Sitohy, M., 2018. Mycobacterium marinum infection in fish and man: epidemiology, pathophysiology and management; a review. Veterinary Quarterly, 38(1), 35-46. [DOI:10.1080/01652176.2018.1447171] [PMID] [PMCID]
40. Huicab-Pech, Z., Landeros-Sánchez, C., Castañeda-Chávez, M., Lango-Reynoso, F., López-Collado, C. and Platas Rosado, D., 2016. Current state of bacteria pathogenicity and their relationship with host and environment in tilapia Oreochromis niloticus. Journal of aquaculture research and development, 7(5), 1-10.
41. Igbinosa, E. O. and Okoh, A. I., 2008. Emerging Vibrio species: an unending threat to public health in developing countries. Research in microbiology, 159(7-8), 495-506. [DOI:10.1016/j.resmic.2008.07.001] [PMID]
42. Joseph, S. W. and Carnahan, A., 1994. The isolation, identification, and systematics of the motile Aeromonas species. Annual Review of Fish Diseases, 4, 315-343. [DOI:10.1016/0959-8030(94)90033-7]
43. Kayansamruaj, P., Dong, H. T., Hirono, I., Kondo, H., Senapin, S. and Rodkhum, C., 2017. Comparative genome analysis of fish pathogen Flavobacterium columnare reveals extensive sequence diversity within the species. Infection, Genetics and Evolution, 54, 7-17. [DOI:10.1016/j.meegid.2017.06.012] [PMID]
44. Kim, K. T., Lee, S. H., Lee, K. K., Han, J. E. and Kwak, D., 2021. Enhanced Virulence of Aeromonas hydrophila Is Induced by Stress and Serial Passaging in Mice. Animals, 11(2), 508. [DOI:10.3390/ani11020508] [PMID] [PMCID]
45. Kumar, G., Menanteau-Ledouble, S., Saleh, M. and El-Matbouli, M., 2015. Yersinia ruckeri, the causative agent of enteric redmouth disease in fish. Veterinary research, 46(1), 1-10. [DOI:10.1186/s13567-015-0238-4] [PMID] [PMCID]
46. Kumari, K., 2020. Pathogens of major concern in fish: A review. Journal of Advances in Microbiology Research, 1(1), 15-18.
47. Lange, M. D., Abernathy, J., Farmer, B. D. and Beck, B. H., 2021. Use of an immersion adjuvant with a Flavobacterium columnare recombinant protein vaccine in channel catfish. Fish & Shellfish Immunology, 117, 136-139. [DOI:10.1016/j.fsi.2021.07.025] [PMID]
48. Lannan, C. and Fryer, J., 1994. Extracellular survival of Piscirickettsia salmonis. Journal of fish diseases, 17(5), 545-548. [DOI:10.1111/j.1365-2761.1994.tb00251.x]
49. Lulijwa, R., Alfaro, A. C. and Young, T., 2022. Metabolomics in salmonid aquaculture research: Applications and future perspectives. Reviews in Aquaculture, 14(2), 547-577. [DOI:10.1111/raq.12612]
50. Marandi, A. and Rahmati-Holasoo, H., 2021. A comprehensive overview of Mycobacteriosis; zoonosis and transmissible disease between fish and humans. Journal of Fisheries, 74(4), 511-523. [DOI:10.22059/jfisheries.2021.319834.1235]
51. Marcogliese, D. J., 2008. The impact of climate change on the parasites and infectious diseases of aquatic animals. Review Science Technology, 27(2), 467-484. [DOI:10.20506/rst.27.2.1820]
52. Marcos‐López, M., Gale, P., Oidtmann, B. C. and Peeler, E. J., 2010. Assessing the impact of climate change on disease emergence in freshwater fish in the United Kingdom. Transboundary and emerging diseases, 57(5), 293-304. [DOI:10.1111/j.1865-1682.2010.01150.x] [PMID]
53. Mauel, M. J. and Miller, D. L., 2002. Piscirickettsiosis and piscirickettsiosis-like infections in fish: a review. Veterinary microbiology, 87(4), 279-289. [DOI:10.1016/S0378-1135(02)00085-8] [PMID]
54. McBride, M. J., Xie, G., Martens, E. C., Lapidus, A., Henrissat, B., Rhodes, R. G., Goltsman, E., Wang, W., Xu, J., Hunnicutt, D.W. and Staroscik, A.M., 2009. Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Applied and environmental microbiology, 75(21), 6864-6875. [DOI:10.1128/AEM.01495-09] [PMID] [PMCID]
55. Mitchell, S. and Rodger, H. 2011. A review of infectious gill disease in marine salmonid fish. Journal of fish diseases, 34(6), 411-432. [DOI:10.1111/j.1365-2761.2011.01251.x] [PMID]
56. Nagasawa, K. and Cruz-Lacierda, E. R., 2004. Diseases of cultured groupers. Aquaculture Department, Southeast Asian Fisheries Development Center.
57. Nhinh, D. T., Le, D. V., Van, K. V., Huong Giang, N. T., Dang, L. T. and Hoai, T. D., 2021. Prevalence, virulence gene distribution and alarming the multidrug resistance of Aeromonas hydrophila associated with disease outbreaks in freshwater aquaculture. Antibiotics, 10(5), 532. [DOI:10.3390/antibiotics10050532] [PMID] [PMCID]
58. NOAA., 2021. Climate Change Indicators: Sea Surface Temperature. Available: https://www.epa.gov/climate indicators/climate-change-indicators-sea-surface-temperature
59. Noga, E. J., 2010. Fish Disease: Diagnosis and Treatment. 2nd ed. USA: Wiley-Blackwell. [DOI:10.1002/9781118786758]
60. Oplinger, R. W. and Wagner, E. J., 2013. Control of Flavobacterium psychrophilum: tests of erythromycin, streptomycin, osmotic and thermal shocks, and rapid pH change. Journal of Aquatic Animal Health, 25(1), 1-8. [DOI:10.1080/08997659.2012.720636] [PMID]
61. Pajdak‐Czaus, J., Platt‐Samoraj, A., Szweda, W., Siwicki, A. K. and Terech‐Majewska, E., 2019. Yersinia ruckeri-A threat not only to rainbow trout. Aquaculture Research, 50(11), 3083-3096. [DOI:10.1111/are.14274]
62. Palmeiro, B. and Roberts, H., 2013. Bacterial disease in fish. In: Clinical Veterinary Advisor: Birds and exotic pets, in: Mayer, J., Donnelly, T. M., Elsevier/Saunders, pp. 17-20.
63. Patra, A., Sarker, S., Banerjee, S., Adikesavalu, H., Biswas, D. and Abraham, T. J., 2016. Rapid detection of Flavobacterium columnare infection in fish by species-specific polymerase chain reaction. Journal of Aquaculture Research & Development, 7, 445. [DOI:10.4172/2155-9546.1000445]
64. Pękala-Safińska, A., 2018. Contemporary threats of bacterial infections in freshwater fish. Journal of veterinary research, 62(3), 261-267. [DOI:10.2478/jvetres-2018-0037] [PMID] [PMCID]
65. Plumb, J. A. and Hanson, L. A., 2010. Health maintenance and principal microbial diseases of cultured fishes. John Wiley & Sons. [DOI:10.1002/9780470958353]
66. Pridgeon, J. W. and Klesius, P. H., 2012. Major bacterial diseases in aquaculture and their vaccine development. CABI Reviews, 7, 1-16. [DOI:10.1079/PAVSNNR20127048]
67. Rahman, M. M., Rahman, M. A., Hossain, M. T., Siddique, M. P., Haque, M. E., Khasruzzaman, A. K. M. and Islam, M. A., 2022. Efficacy of bi-valent whole cell inactivated bacterial vaccine against Motile Aeromonas Septicemia (MAS) in cultured catfishes (Heteropneustes fossilis, Clarias batrachus and pangasius pangasius) in Bangladesh. Saudi Journal of Biological Sciences, 29(5), 3881-3889. [DOI:10.1016/j.sjbs.2022.03.012] [PMID] [PMCID]
68. Rahmati-Holasoo, H., Marandi, A., Ebrahimzadeh Mousavi, H., & Azizi, A., 2021. Study of the losses of Siberian sturgeon (Acipenser baerii) due to gill infection with Diclybothrium armatum in sturgeon farms of Qom and Mazandaran provinces. Journal of Animal Environment, 13(4), 193-200. [DOI:10.22034/AEJ.2021.165929]
69. Rahmati-Holasoo, H., Marandi, A., Ebrahimzadeh Mousavi, H. and Taheri Mirghaed, A., 2022. Parasitic fauna of farmed freshwater ornamental fish in the northwest of Iran. Aquaculture International, 30(2), 633-652. [DOI:10.1007/s10499-021-00832-0]
70. Rasmussen-Ivey, C. R., Figueras, M. J., McGarey, D. and Liles, M. R., 2016. Virulence factors of Aeromonas hydrophila: in the wake of reclassification. Frontiers in microbiology, 7, 1337. [DOI:10.3389/fmicb.2016.01337]
71. Rivera, H. U. a. I. N. G., 2006. Aquatic Environment. In: The biology of vibrios. Washington, D.C., ASM Press, pp. 175-189.
72. Romalde, J. L., Ravelo, C., Valdés, I., Magariños, B., de la Fuente, E., San Martín, C., Avendaño-Herrera, R. and Toranzo, A. E., 2008. Streptococcus phocae, an emerging pathogen for salmonid culture. Veterinary Microbiology, 130(1-2), 198-207. [DOI:10.1016/j.vetmic.2007.12.021] [PMID]
73. Romstad, A. B., Reitan, L. J., Midtlyng, P., Gravningen, K., & Evensen, Ø., 2012. Development of an antibody ELISA for potency testing of furunculosis (Aeromonas salmonicida subsp salmonicida) vaccines in Atlantic salmon (Salmo salar L). Biologicals, 40(1), 67-71. [DOI:10.1016/j.biologicals.2011.09.011] [PMID]
74. Roux, F. L., Wegner, K. M., Baker-Austin, C., Vezzulli, L., Osorio, C. R., Amaro, C., Ritchie, J. M., Defoirdt, T., Destoumieux-Garzón, D. and Blokesch, M., 2015. The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11-12th March 2015). Frontiers in microbiology, 6, 830. /fmicb.2015.00830 [DOI:10.3389]
75. Ruane, N., Rodger, H., Mitchell, S., Doyle, T., Baxter, E. and Fringuelli, E., 2013. GILPAT: An Investigation into Gill Pathologies in Marine Reared Finfish.
76. Runtuvuori‐Salmela, A., Kunttu, H. M., Laanto, E., Almeida, G. M., Mäkelä, K., Middelboe, M. and Sundberg, L. R., 2022. Prevalence of genetically similar Flavobacterium columnare phages across aquaculture environments reveals a strong potential for pathogen control. Environmental Microbiology, 24(5), 2404-2420. [DOI:10.1111/1462-2920.15901] [PMID] [PMCID]
77. Schwenteit, J., Bogdanović, X., Fridjonsson, O. H., Aevarsson, A., Bornscheuer, U. T., Hinrichs, W., & Gudmundsdottir, B. K., 2013. Toxoid construction of AsaP1, a lethal toxic aspzincin metalloendopeptidase of Aeromonas salmonicida subsp. achromogenes, and studies of its activity and processing. Veterinary microbiology, 162(2-4), 687-694. [DOI:10.1016/j.vetmic.2012.09.015] [PMID]
78. Shoemaker, C. A., LaFrentz, B. R. and Klesius, P. H., 2012. The Flavobacterium columnare challenge: Host, Genomovar and Virulence. In: Flavobacterium Meeting. Flavobacterium, pp. 41.
79. Småge, S. B., Brevik, Ø. J., Duesund, H., Ottem, K. F., Watanabe, K. and Nylund, A., 2016. Tenacibaculum finnmarkense sp. nov., a fish pathogenic bacterium of the family Flavobacteriaceae isolated from Atlantic salmon. Antonie Van Leeuwenhoek, 109(2), 273-285. [DOI:10.1007/s10482-015-0630-0] [PMID] [PMCID]
80. Småge, S. B., Brevik, Ø. J., Frisch, K., Watanabe, K., Duesund, H. and Nylund, A., 2017. Concurrent jellyfish blooms and tenacibaculosis outbreaks in Northern Norwegian Atlantic salmon (Salmo salar) farms. PloS one, 12(11), e0187476. [DOI:10.1371/journal.pone.0187476] [PMID] [PMCID]
81. Soltani, M. and Burke, C. M., 1995. Responses of fish-pathogenic Cytophaga/Flexibacter-like bacteria (CFLB) to environmental conditions. Bulletin of the European Association of Fish Pathologists.
82. Soltani, M., Baldisserotto, B., Hosseini Shekarabi, S. P., Shafiei, S. and Bashiri, M., 2021a. Lactococcosis a Re-Emerging Disease in Aquaculture: Disease Significant and Phytotherapy. Veterinary Sciences, 8(9), 181. [DOI:10.3390/vetsci8090181] [PMID] [PMCID]
83. Soltani, M., Jamshidi, S. and Sharifpour, I., 2005. Streptococcosis caused by Streptococcus iniae in farmed rainbow trout (Oncorhynchys mykiss) in Iran: biophysical characteristics and pathogenesis. Bulletin of the European Association of Fish Pathologists, 25(3), 95-106.
84. Soltani, M., Mohamadian, S., Rouholahi, S., Soltani, E., & Rezvani, S., 2015. Shirazi thyme (Zataria multiflora) essential oil suppresses the expression of PavA and Hly genes in Lactococcus garvieae, the causative agent of lactococcosis in farmed fish. Aquaculture, 442, 74-77. [DOI:10.1016/j.aquaculture.2015.03.001]
85. Soltani, M., Mokhtari, A., Mirzargar, S. S., Taherimirghaed, A., Zargar, A., Shafiei, S., & Hosseini-Shekarabi, S. P., 2016. Efficacy and immune response of intraperitoneal vaccination of rainbow trout (Oncorhynchus mykiss) with a Yersinia ruckeri bacterin formulated with Montanide™ ISA 763 AVG adjuvant. Bulletin of European Association of Fish Pathologists, 36(6), 225-236.
86. Soltani, M., Munday, B. and Carson, J., 1994. Susceptibility of some freshwater species of fish to infection by Cytophaga johnsonae. Bulletin of the European Association of Fish Pathologists.
87. Soltani, M., Munday, B. L. and Burke, C. M., 1996. The relative susceptibility of fish to infections by Flexibacter columnaris and Flexibacter maritimus. Aquaculture, 140(3), 259-264. [DOI:10.1016/0044-8486(95)01157-9]
88. Soltani, M., Naeiji, N., Zagar, A., Shohreh, P. and Taherimirghaed, A., 2021b. Biotyping and serotyping of Lactococcus garvieae isolates in affected farmed rainbow trout (Oncorhynchus mykiss) in north Iran. Iranian Journal of Fisheries Sciences, 20(6), 1542-1559.
89. Soltani, M., Shafiei, S., Yosefi, P., Mosavi, S. H., & Mokhtari, A., 2014. Effect of Montanide™ IMS 1312 VG adjuvant on efficacy of Yersinia ruckeri vaccine in rainbow trout (Oncorhynchus mykiss). Fish & shellfish immunology, 37(1), 60-65. [DOI:10.1016/j.fsi.2013.12.027] [PMID]
90. Soto-Dávila, M., Chakraborty, S. and Santander, J., 2022. Relative expression and validation of Aeromonas salmonicida subsp. salmonicida reference genes during ex vivo and in vivo fish infection. Infection, Genetics and Evolution, 105320. [DOI:10.1016/j.meegid.2022.105320] [PMID]
91. Starliper, C. E., 2011. Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. Journal of Advanced Research, 2(2), 97-108. [DOI:10.1016/j.jare.2010.04.001]
92. Suomalainen, L. R., Kunttu, H., Valtonen, E. T., Hirvelä-Koski, V. and Tiirola, M., 2006. Molecular diversity and growth features of Flavobacterium columnare strains isolated in Finland. Diseases of aquatic organisms, 70(1-2), 55-61. [DOI:10.3354/dao070055] [PMID]
93. Taheri-Mirghaed, A., Soltani, M., Shafiei, S., Mirzargar, S., & Shokrpur, S., 2018. Pathogenicity of Yersinia ruckeri in Rainbow trout (Oncorhynchus mykiss). Journal of Veterinary Research, 73(1). 1-8. [DOI:10.22059/jvr.2017.118638.2252]
94. Tenma, H., Tsunekawa, K., Fujiyoshi, R., Takai, H., Hirose, M., Masai, N., Sumi, K., Takihana, Y., Yanagisawa, S., Tsuchida, K. and Ohara, K., 2021. Spatiotemporal distribution of Flavobacterium psychrophilum and ayu Plecoglossus altivelis in rivers revealed by environmental DNA analysis. Fisheries science, 87(3), 321-330. [DOI:10.1007/s12562-021-01510-z]
95. Tewari, R., Dudeja, M., Nandy, S. and Das, A.K., 2014. Isolation of Aeromonas salmonicida from human blood sample: a case report. Journal of clinical and diagnostic research: JCDR, 8(2), p.139. [DOI:10.7860/JCDR/2014/6883.4032] [PMID] [PMCID]
96. Thompson, F. L., Iida, T. and Swings, J., 2004. Biodiversity of vibrios. Microbiology and molecular biology reviews, 68(3), 403-431. [DOI:10.1128/MMBR.68.3.403-431.2004] [PMID] [PMCID]
97. Toranzo, A. E., Magariños, B. and Romalde, J. L., 2005. A review of the main bacterial fish diseases in mariculture systems. Aquaculture, 246(1-4), 37-61. [DOI:10.1016/j.aquaculture.2005.01.002]
98. Uddin, M. N., Al-Harbi, A. H. and Wakabayashi, H., 2008. Optimum temperatures for the peak growth of some selected bacterial fish pathogens. Asian Fisheries Science, 21, 205-214. [DOI:10.33997/j.afs.2008.21.2.006]
99. Valdes, S., Irgang, R., Barros, M. C., Ilardi, P., Saldarriaga‐Córdoba, M., Rivera-Bohle, J., Madrid, E., Gajardo-Córdova, J. and Avendaño‐Herrera, R., 2021. First report and characterization of Tenacibaculum maritimum isolates recovered from rainbow trout (Oncorhynchus mykiss) farmed in Chile. Journal of Fish Diseases, 44(10), 1481-1490. [DOI:10.1111/jfd.13466] [PMID]
100. Van Doan, H., Soltani, M., Leitão, A., Shafiei, S., Asadi, S., Lymbery, A. J., & Ringø, E., 2022. Streptococcosis a Re-Emerging Disease in Aquaculture: Significance and Phytotherapy. Animals, 12, 2443. [DOI:10.3390/ani12182443] [PMID] [PMCID]
101. Vasquez, I., Hossain, A., Gnanagobal, H., Valderrama, K., Campbell, B., Ness, M., Charette, S.J., Gamperl, A.K., Cipriano, R., Segovia, C., and Santander, J., 2022. Comparative Genomics of Typical and Atypical Aeromonas salmonicida Complete Genomes Revealed New Insights into Pathogenesis Evolution. Microorganisms, 10(1), 189. [DOI:10.3390/microorganisms10010189] [PMID] [PMCID]
102. Vendrell, D., Balcázar, J. L., Ruiz-Zarzuela, I., De Blas, I., Gironés, O. and Múzquiz, J. L., 2006. Lactococcus garvieae in fish: a review. Comparative immunology, microbiology and infectious diseases, 29(4), 177-198. [DOI:10.1016/j.cimid.2006.06.003] [PMID]
103. Verma, D. K., Rathore, G., Pradhan, P. K., Sood, N. and Punia, P., 2015. Isolation and characterization of Flavobacterium columnare from freshwater ornamental goldfish Carassius auratus. Journal of Environmental Biology, 36(2), 433.
104. Wade, J. and Weber, L., 2020. Characterization of Tenacibaculum maritimum and mouth rot to inform pathogen transfer risk assessments in British Columbia. DFO Canadian Science Advisory Secretariat. Research document, 61.
105. Wade, N. M., Clark, T. D., Maynard, B. T., Atherton, S., Wilkinson, R. J., Smullen, R. P. and Taylor, R. S., 2019. Effects of an unprecedented summer heatwave on the growth performance, flesh colour and plasma biochemistry of marine cage-farmed Atlantic salmon (Salmo salar). Journal of thermal biology, 80, 64-74. [DOI:10.1016/j.jtherbio.2018.12.021] [PMID]
106. Woo, P. T., and Cipriano, R. C., (Eds.) 2017. Fish viruses and bacteria: pathobiology and protection. CABI. [DOI:10.1079/9781780647784.0000]
107. Woo, S. J., Kim, M. S., Jeong, M. G., Do, M. Y., Hwang, S. D. and Kim, W. J., 2022. Establishment of Epidemiological Cut-Off Values and the Distribution of Resistance Genes in Aeromonas hydrophila and Aeromonas veronii Isolated from Aquatic Animals. Antibiotics, 11(3), 343. [DOI:10.3390/antibiotics11030343] [PMID] [PMCID]
108. Wrobel, A., Leo, J. C. and Linke, D., 2019. Overcoming fish defences: the virulence factors of Yersinia ruckeri. Genes, 10(9), 700. [DOI:10.3390/genes10090700] [PMID] [PMCID]
109. Ziafati Kafi, Z., Ghalyanchilangeroudi, A., Nikaein, D., Marandi, A., Rahmati‐Holasoo, H., Sadri, N., Erfanmanesh, A. and Enayati, A., 2022. Phylogenetic analysis and genotyping of Iranian infectious haematopoietic necrosis virus (IHNV) of rainbow trout (Oncorhynchus mykiss) based on the glycoprotein gene. Veterinary Medicine and Science. [DOI:10.1002/vms3.931] [PMID] [PMCID]
110. Zrnčić, S., Vendramin, N., Boutrup, T. S., Boye, M., Madsen, L., Nonneman, B., Brnić, D. and Oraić, D., 2021. First description and diagnostics of disease caused by Piscirickettsia salmonis in farmed European sea bass (Dicentrarchus labrax Linnaeus) from Croatia. Journal of Fish Diseases, 44(7), 1033-1042. [DOI:10.1111/jfd.13366] [PMID]

XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Marandi A, Fakhri Demeshghieh A, Almasi P, Bashiri M, Soltani M. Review Article: An overview of climate change and prevalence of bacterial diseases in salmonid aquaculture. Sustainable Aquaculture. Health. Management. J. 2022; 8 (2) :1-19
URL: http://ijaah.ir/article-1-262-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (2022) Back to browse issues page
Persian site map - English site map - Created in 0.06 seconds with 29 queries by YEKTAWEB 4570