[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: ::
Back to the articles list Back to browse issues page
Enhancement of food safety using nanoemulsion with emphasize on fish food: A Review
L Khoshbou Lahijani, H Ahari , A Sharifan
Abstract:   (230 Views)
Nanotechnology is an innovative approach that its application has inspiring prospective for controlling and preventing diseases, extending shelf-life of food stuff, and other uses in biology, chemistry or industries. Nanoemulsions are products of a branch of nanotechnology comprising submicron emulsion that also refer to nanoemulsion (r < 100 nm) of which high energy as one of the nanoemulsion production method, includes rotary-stator mixers, high pressure homogenizer, microfluidization, ultrasound and membrane emulsion. Another one, low energy method is classified into isothermal and thermal. Isothermal method is, spontaneous emulsification, solvent displacement, and emulsion phase inversion. Also, from among the thermal methods it can be referred to the most important one of them which is the phase inversion temperature. In the following, the technics for recognition and diagnosis of nanoemulsion structures are discussed and these technics are generally divided into separation, physical properties determination, and imaging technics.
 
Keywords: High energy methods, Low-energy methods, Nanoemulsion, Antimicrobial properties
Full-Text [PDF 480 kb]   (82 Downloads)    
Type of Study: Review | Subject: Fish processing
Received: 2019/01/29 | Accepted: 2019/04/29
References
1. Ahari H., Hedayati M., Akbari-Adergani B., Kakoolaki S., Hosseini H. & Anvar A. (2017) Staphylococcus aureus exotoxin detection using potentiometric nanobiosensor for microbial electrode approach with the effects of pH and temperature. International Journal of Food Properties 20, 1578-1587. [DOI:10.1080/10942912.2017.1347944]
2. Abbas S., Hayat K., Karangwa E., Bashari M. & Zhang X. (2013) An overview of ultrasound-assisted food-grade nanoemulsions. Food Engineering Reviews 5(3), 139-157. [DOI:10.1007/s12393-013-9066-3]
3. Abdollahi M., Rezaei M., & Farzi G. (2014) Influence of chitosan/clay functional bionanocomposite activated with rosemary essential oil on the shelf life of fresh silver carp. International Journal of Food Science & Technology 49(3), 811-818. [DOI:10.1111/ijfs.12369]
4. Ahari H. (2017) The Use of Innovative Nano emulsions and Nano-Silver Composites Packaging for anti-bacterial properties: An article review. Iranian Journal of Aquatic Animal Health 3(1), 61-73. [DOI:10.18869/acadpub.ijaah.3.1.61]
5. Anton N. & Vandamme T. F. (2009) The universality of low-energy nano-emulsification. International journal of pharmaceutics 377(1-2), 142-147. [DOI:10.1016/j.ijpharm.2009.05.014] [PMID]
6. Bali V., Ali M. & Ali J. (2010) Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids and Surfaces B: Biointerfaces 76(2), 410-420. [DOI:10.1016/j.colsurfb.2009.11.021] [PMID]
7. Barani S., Ahari H. & Bazgir S. (2018) Increasing the shelf life of pikeperch (Sander lucioperca) fillets affected by low-density polyethylene/Ag/TiO2 nanocomposites experimentally produced by sol-gel and melt-mixing methods. International Journal of Food Properties 21(1), 1923-1936. [DOI:10.1080/10942912.2018.1508162]
8. Bazarani‐Gilani B. (2018) Activating sodium alginate‐based edible coating using a dietary supplement for increasing the shelf life of rainbow trout fillet during refrigerated storage (4±1° C). Journal of Food Safety 38(1), e12395. [DOI:10.1111/jfs.12395]
9. Bilbao-Sáinz C., Avena-Bustillos R. J., Wood D. F., Williams T. G. & McHugh T. H. (2010) Nanoemulsions prepared by a low-energy emulsification method applied to edible films. Journal of agricultural and food chemistry 58(22), 11932-11938. [DOI:10.1021/jf102341r] [PMID]
10. Cardoso-Ugarte G. A., López-Malo A. & Jiménez-Munguía M. T. (2016) Application of nanoemulsion technology for encapsulation and release of lipophilic bioactive compounds in food. In Emulsions (pp. 227-255): Elsevier. [DOI:10.1016/B978-0-12-804306-6.00007-6]
11. Donsì F., Sessa, M. & Ferrari G. (2011) Effect of emulsifier type and disruption chamber geometry on the fabrication of food nanoemulsions by high pressure homogenization. Industrial & Engineering Chemistry Research 51(22), 7606-7618. [DOI:10.1021/ie2017898]
12. Ferreira-Nunes R., Gratieri T., Gelfuso G. M. & Cunha-Filho M. (2018) Mixture design applied in compatibility studies of catechin and lipid compounds. Journal of pharmaceutical and biomedical analysis 149, 612-617. [DOI:10.1016/j.jpba.2017.11.069] [PMID]
13. Ganachaud F. & Katz J. L. (2005) Nanoparticles and nanocapsules created using the Ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high‐shear devices. ChemPhysChem 6(2), 209-216. [DOI:10.1002/cphc.200400527] [PMID]
14. Gharibzahedi S. M. T. & Mohammadnabi S. (2017) Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. International Journal of Biological Macromolecules 95, 769-777. Retrieved from http://www.sciencedirect.com/science/article/pii/S0141813016320839. [DOI:10.1016/j.ijbiomac.2016.11.119] [PMID]
15. Håkansson A. & Rayner M. (2018) General Principles of Nanoemulsion Formation by High-Energy Mechanical Methods. In Nanoemulsions (pp. 103-139): Elsevier. [DOI:10.1016/B978-0-12-811838-2.00005-9] [PMID]
16. Hilbig J., Ma, Q., Davidson P. M., Weiss J. & Zhong Q. (2016) Physical and antimicrobial properties of cinnamon bark oil co-nanoemulsified by lauric arginate and Tween 80. International journal of food microbiology 233, 52-59. [DOI:10.1016/j.ijfoodmicro.2016.06.016] [PMID]
17. Hossaini S. E., Asadnezhad Z., Ahari H., Anvar S. A. A., Abdi F., Toumari I. & Dastmalchi F. (2014) Survey of Increasing the Shelf-Life of Dry Salami by Nano Packagings. Iranian Journal of Public Health 43(2), 160.
18. Jin W., Xu W., Liang H., Li Y., Liu S. & Li B. (2016) Nanoemulsions for food: properties, production, characterization, and applications. In Emulsions (pp. 1-36): Elsevier. [DOI:10.1016/B978-0-12-804306-6.00001-5]
19. Komaiko J. S. & McClements D. J. (2016) Formation of food‐grade nanoemulsions using low‐energy preparation methods: A review of available methods. Comprehensive Reviews in Food Science and Food Safety 15(2), 331-352. [DOI:10.1111/1541-4337.12189]
20. Kumar A., Ramalingam C., Dasgupta N. & Ranjan S. (2016) Nanoemulsions in Food Science and Nutrition. In Nanotechnology in Nutraceuticals (pp. 157-186): CRC Press.
21. Lee L. & Norton I. T. (2013) Comparing droplet breakup for a high-pressure valve homogeniser and a Microfluidizer for the potential production of food-grade nanoemulsions. Journal of Food Engineering 114(2), 158-163. [DOI:10.1016/j.jfoodeng.2012.08.009]
22. Li J., Chang J. W., Saenger M. & Deering A. (2017) Thymol nanoemulsions formed via spontaneous emulsification: Physical and antimicrobial properties. Food chemistry 232, 191-197. [DOI:10.1016/j.foodchem.2017.03.147] [PMID]
23. Li M., Ma Y. & Cui J. (2014) Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin. LWT-Food science and technology 59(1), 49-58. [DOI:10.1016/j.lwt.2014.04.054]
24. Liang R., Xu, S., Shoemaker C. F., Li, Y., Zhong F. & Huang Q. (2012) Physical and antimicrobial properties of peppermint oil nanoemulsions. Journal of agricultural and food chemistry 60(30), 7548-7555. [DOI:10.1021/jf301129k] [PMID]
25. Lu W. C., Huang D. W., Wang C. C., Yeh C. H., Tsai J. C., Huang Y. T. & Li P. H. (2018) Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. Journal of food and drug analysis 26(1), 82-89. [DOI:10.1016/j.jfda.2016.12.018] [PMID]
26. Mahdi Jafari S., He Y., & Bhandari B. (2006) Nano-emulsion production by sonication and microfluidization - a comparison. International Journal of Food Properties 9(3), 475-485. [DOI:10.1080/10942910600596464]
27. McClements D. (2015) Food emulsions: principles, practices, and techniques. Food emulsions: principles, practices, and techniques (Ed. 3). [DOI:10.1201/b18868]
28. McClements D., Decker E. & Weiss J. (2007) Emulsion‐based delivery systems for lipophilic bioactive components. Journal of Food Science 72(8), R109-R124. [DOI:10.1111/j.1750-3841.2007.00507.x] [PMID]
29. McClements D. J. (2010) Emulsion design to improve the delivery of functional lipophilic components. Annual review of food science and technology 1, 241-269. [DOI:10.1146/annurev.food.080708.100722] [PMID]
30. McClements D. J. (2011) Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7(6), 2297-2316. [DOI:10.1039/C0SM00549E]
31. McClements D. J. & Jafari S. M. (2018) Chapter 1 - General Aspects of Nanoemulsions and Their Formulation. In S. M. Jafari & D. J. McClements (Eds.), Nanoemulsions (pp. 3-20): Academic Press. [DOI:10.1016/B978-0-12-811838-2.00001-1]
32. McClements D. J. & Rao J. (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical reviews in food science and nutrition, 51(4), 285-330. [DOI:10.1080/10408398.2011.559558] [PMID]
33. Noori S., Zeynali F. & Almasi H. (2018) Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 84, 312-320. [DOI:10.1016/j.foodcont.2017.08.015]
34. Ostertag F., Weiss J. & McClements D. J. (2012) Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. Journal of colloid and interface science 388(1), 95-102. [DOI:10.1016/j.jcis.2012.07.089] [PMID]
35. Ozogul Y., Yuvka İ., Ucar Y., Durmus M., Kösker A. R., Öz M. & Ozogul F. (2017) Evaluation of effects of nanoemulsion based on herb essential oils (rosemary, laurel, thyme and sage) on sensory, chemical and microbiological quality of rainbow trout (Oncorhynchus mykiss) fillets during ice storage. LWT, 75, 677-684. [DOI:10.1016/j.lwt.2016.10.009]
36. Qian C. & McClements D. J. (2011) Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids 25(5), 1000-1008. [DOI:10.1016/j.foodhyd.2010.09.017]
37. Rao J. & McClements D. J. (2010) Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. Journal of agricultural and food chemistry, 58(11) 7059-7066. [DOI:10.1021/jf100990r] [PMID]
38. Roy A. & Guha P. (2018) Formulation and characterization of betel leaf (Piper betle L.) essential oil based nanoemulsion and its in vitro antibacterial efficacy against selected food pathogens. Journal of Food Processing and Preservation e13617. [DOI:10.1111/jfpp.13617]
39. Ryu V., McClements D. J., Corradini M. G. & McLandsborough L. (2018) Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion. Food chemistry 245, 104-111. [DOI:10.1016/j.foodchem.2017.10.084] [PMID]
40. Saberi A. H., Fang Y. & McClements D. J. (2015) Thermal reversibility of vitamin E-enriched emulsion-based delivery systems produced using spontaneous emulsification. Food chemistry 185, 254-260. [DOI:10.1016/j.foodchem.2015.03.080] [PMID]
41. Saifullah M., Ahsan A. & Shishir M. R. I. (2016) 12 - Production, stability and application of micro- and nanoemulsion in food production and the food processing industry A2 - Grumezescu, Alexandru Mihai. In Emulsions (pp. 405-442): Academic Press. [DOI:10.1016/B978-0-12-804306-6.00012-X]
42. Sajjadi S. (2006) Nanoemulsion formation by phase inversion emulsification: on the nature of inversion. Langmuir 22(13), 5597-5603. [DOI:10.1021/la060043e] [PMID]
43. Saloko S., Darmadji P., Setiaji B. & Pranoto Y. (2014) Antioxidative and antimicrobial activities of liquid smoke nanocapsules using chitosan and maltodextrin and its application on tuna fish preservation. Food bioscience 7, 71-79. [DOI:10.1016/j.fbio.2014.05.008]
44. Salvia-Trujillo L., Soliva-Fortuny R., Rojas-Graü M. A., McClements D. J. & Martín-Belloso O. (2017) Edible nanoemulsions as carriers of active ingredients: A review. Annual review of food science and technology 8, 439-466. [DOI:10.1146/annurev-food-030216-025908] [PMID]
45. Scholz P. & Keck C. M. (2015) Nanoemulsions produced by rotor-stator high speed stirring. International Journal of Pharmaceutics 482(1-2), 110-117. [DOI:10.1016/j.ijpharm.2014.12.040] [PMID]
46. Schuh R. S., Bruxel F., & Teixeira H. F. (2014) Physicochemical properties of lecithin-based nanoemulsions obtained by spontaneous emulsification or high-pressure homogenization. Química Nova 37(7), 1193-1198. https://doi.org/10.5935/0100-4042.20140186 [DOI:10.5935/0100-4042.20140250]
47. Schwarz J. C., Klang V., Karall S., Mahrhauser D., Resch G. P. & Valenta C. (2012) Optimisation of multiple W/O/W nanoemulsions for dermal delivery of aciclovir. International Journal of Pharmaceutics 435(1), 69-75. [DOI:10.1016/j.ijpharm.2011.11.038] [PMID]
48. Shahbazzadeh D., Ahari H., Rahimi N. M., Dastmalchi F., Soltani M., Fotovat M., Rahmannya J. & Khorasani N. (2009) The effects of nanosilver (Nanocid) on survival percentage of rainbow trout (Oncorhynchus mykiss). Pakistan Journal of Nutrition 8(8), 1178-1179. [DOI:10.3923/pjn.2009.1178.1179]
49. Solans C., Izquierdo P., Nolla J., Azemar N. & Garcia-Celma M. J. (2005) Nano-emulsions. Current Opinion in Colloid & Interface Science 10(3), 102-110. Retrieved from http://www.sciencedirect.com/science/article/pii/S1359029405000348. [DOI:10.1016/j.cocis.2005.06.004]
50. van der Schaaf U. S. & Karbstein H. P. (2018) Fabrication of nanoemulsions by rotor-stator emulsification. In Nanoemulsions (pp. 141-174): Elsevier. [DOI:10.1016/B978-0-12-811838-2.00006-0]
51. Villalobos-Castillejos F., Granillo-Guerrero V. G., Leyva-Daniel D. E., Alamilla-Beltrán L., Gutiérrez-López G. F., Monroy-Villagrana A. & Jafari S. M. (2018) Fabrication of Nanoemulsions by Microfluidization. In Nanoemulsions (pp. 207-232): Elsevier. [DOI:10.1016/B978-0-12-811838-2.00008-4]
52. Walker R. M., Decker E. A. & McClements D. J. (2015) Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: Effect of surfactant concentration and particle size. Journal of Food Engineering 164, 10-20. Retrieved from http://www.sciencedirect.com/science/article/pii/S0260877415001958. [DOI:10.1016/j.jfoodeng.2015.04.028]
53. Wang S., Su R., Nie S., Sun M., Zhang J., Wu, D. & Moustaid-Moussa N. (2014) Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. The Journal of nutritional biochemistry 25(4), 363-376. [DOI:10.1016/j.jnutbio.2013.10.002] [PMID] [PMCID]
54. Wooster T. J., Andrews H. F. & Sanguansri P. (2017) Nanoemulsions. In: Google Patents.
55. Wu, C., Wang, L., Hu, Y., Chen, S., Liu, D., & Ye, X. (2016). Edible coating from citrus essential oil-loaded nanoemulsions: physicochemical characterization and preservation performance. RSC Advances 6(25), 20892-20900. [DOI:10.1039/C6RA00757K]
56. Yu C., Cha Y., Wu F., Xu X., Qin Y., Li X. & Du M. (2018) Effects of high‐pressure homogenisation on structural and functional properties of mussel (Mytilus edulis) protein isolate. International Journal of Food Science & Technology 53(5), 1157-1165. [DOI:10.1111/ijfs.13690]
57. Yuan Y., Gao Y., Zhao J. & Mao L. (2008) Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International 41(1), 61-68. [DOI:10.1016/j.foodres.2007.09.006]


XML     Print



Back to the articles list Back to browse issues page
Persian site map - English site map - Created in 0.05 seconds with 31 queries by YEKTAWEB 3991