[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Abstract in
AWT IMAGE

 
..
Published articles: 123
Acceptance rate: 77.2
Rejection rate: 22.8
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Time for review and publishing
Articles first review mean= 20 days
Articles acceptance mean= 64 days
Articles publishing mean= 3 days
 
..
DOI
   
   
 
..
cross Ref

AWT IMAGE

..
:: Volume 10, Issue 2 (2024) ::
Sustainable Aquaculture. Health. Management. J. 2024, 10(2): 76-110 Back to browse issues page
Research Article: Efficacy of dietary supplementation with endogenous Bacillus subtilis on growth performance, immune response and gene expression of juvenile rainbow trout (Oncorhynchus mykiss)
M. Bashiri1 , M. Soltani *1 , E. Pirali Kheirabadi2 , S.S. Mirzargar1 , S. Shafiei3 , H. Momeni4
1- 1 Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Iran
2- 3Department of Fisheries, Faculty of Natural Resources, Shahrekord University, Shahrekord Province, Iran
3- 4Department of Food hygiene, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord Province, Iran
4- 5Aquatic Animal Health Unit, Department of Veterinary Medicine, Iran Veterinary Oragansiation, Shahrekord Province, Iran
Abstract:   (493 Views)
Potential of a host-associated probiotic, Bacillus subtilis, was successfully screened from 6 isolates from the intestines of healthy rainbow trout (O. mykiss) based on multiple probiotic characteristics in vitro assays, such as, hemolytic activity, biofilm formation, extracellular enzyme activity, inhibitory activity against pathogens, Physicochemical tolerance to gastrointestinal stress, cell surface hydrophobicity, autoaggregation, and antibiotic susceptibility. A total of 450 O. mykiss fingerlings were randomly distributed in three groups (one control and two probiotic-treated groups in triplicate) and fed with the basal (the control) and B. subtilis–supplemented diets (at a concentration of 5×107 and 108 cell/mL B. subtilis, over a period of 60 days.
After eight weeks of feeding trial revealed that dietary supplementation of B. subtilis 6 at all two concentrations (5×107 and 108 cell/mL of B. subtilis) immunological responses, biochemical parameters, antioxidant parameter and immune-relevant gene expression (interleukin 1β (IL-1β), HSP70 and TGF-β))) relevant to immunity were analyzed on the 30th, and 60th day post-feeding. After the 60-day feeding period, a significant (p<0.05) enhancement in some immune-biochemical response and immune gene expression was evident. Serum AST, ALT levels exhibited a significant (p<0.05) decrease. The inclusion of B. subtilis in the diets led to a substantial (p<0.05) increase in the survival of A. hydrophila–challenged O. mykiss, thereby highlighting the potential of B. subtilis as a beneficial probiotic for aquaculture in short-time period.
Keywords: Probiotic, Bacillus subtilis, Rainbow trout, Disease resistance
Full-Text [PDF 813 kb]   (145 Downloads)    
Type of Study: Original research papers | Subject: Treatment stategies with herbal or others
Received: 2024/09/20 | Accepted: 2025/02/28 | Published: 2025/02/28
References
1. Abdollahi-Arpanahi, D., Soltani, E., Jafaryan, H., Soltani, M., Naderi-Samani, M. and Campa-Córdova, A.I., 2018. Efficacy of two commercial and indigenous probiotics, Bacillus subtilis and Bacillus licheniformis on growth performance, immuno-physiology and resistance response of juvenile white shrimp (Litopenaeus vannamei). Aquaculture, 496(1), pp.43-49. [DOI:10.1016/j.aquaculture.2018.06.082]
2. Aebi, H., 1984. Catalase in vitro. Methods Enzym. 272, 121-126. https://doi.org/ 10.1016/S0076-6879(84)05016-3. https://doi.org/10.1016/S0076-6879(84)05016-3 [DOI:10.1016/S0076-6879(84)05016-3.] [PMID]
3. Ai, Q., Xu, H., Mai, K., Xu, W., Wang, J. and Zhang, W., 2011. Effects of dietary supplementation of Bacillus subtilis and fructooligosaccharide on growth performance, survival, non-specific immune response and disease resistance of juvenile large yellow croaker, Larimichthys crocea. Aquaculture, 317(1-4), pp.155-161. [DOI:10.1016/j.aquaculture.2011.04.036]
4. Aly, S.M., Mohamed, M.F. and John, G., 2008. Effect of probiotics on the survival, growth and challenge infection in Tilapia nilotica (Oreochromis niloticus). Aquaculture research, 39(6), pp.647-656. [DOI:10.1111/j.1365-2109.2008.01932.x]
5. Amar, E.C., Kiron, V., Satoh, S., Okamoto, N. and Watanabe, T., 2000. Effects of dietary βcarotene on the immune response of rainbow trout Oncorhynchus mykiss. Fisheries science, 66(6), pp.1068-1075. [DOI:10.1046/j.1444-2906.2000.00170.x]
6. Anson, M.L., 1938. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. The Journal of general physiology, 22(1), p. 79. [DOI:10.1085/jgp.22.1.79] [PMID] []
7. Assefa, A. and Abunna, F., 2018. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Veterinary medicine international, 1, p. 5432497. [DOI:10.1155/2018/5432497] [PMID] []
8. Azarin, H., Aramli, M.S., Imanpour, M.R. and Rajabpour, M., 2015. Effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis and ferroin solution on growth performance, body composition and haematological parameters in Kutum (Rutilus frisii kutum) fry. Probiotics and antimicrobial proteins, 7, pp. 31-37. [DOI:10.1007/s12602-014-9180-4] [PMID]
9. Balcázar, J.L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D. and Múzquiz, J.L., 2006. The role of probiotics in aquaculture. Veterinary microbiology, 114(3-4), pp. 173-186. [DOI:10.1016/j.vetmic.2006.01.009] [PMID]
10. Balouiri, M., Sadiki, M. and Ibnsouda, S.K., 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6(2), pp. 71-79. [DOI:10.1016/j.jpha.2015.11.005] [PMID] []
11. Banerjee, G. and Ray, A.K., 2017a. Bacterial symbiosis in the fish gut and its role in health and metabolism. Symbiosis, 72, pp. 1-11. [DOI:10.1007/s13199-016-0441-8]
12. Banerjee, G. and Ray, A.K., 2017b. The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115, pp. 66-77. [DOI:10.1016/j.rvsc.2017.01.016] [PMID]
13. Blaxhall, P.C. and Daisley, K.W., 1973. Routine haematological methods for use with fish blood. Journal of fish biology, 5(6), pp. 771-781. http://dx.doi.org/10.1111/j.1095-8649.1973.tb04510.x [DOI:10.1111/j.1095-8649.1973.tb04510.x]
14. Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L. and Vandesompele, J., 2009. The MIQE Guidelines: M inimum I nformation for Publication of Q uantitative Real-Time PCR E xperiments. [DOI:10.1373/clinchem.2008.112797] [PMID]
15. Cao, Y., Li, S., Han, S., Wang, D., Zhao, J., Xu, L., Liu, H. and Lu, T., 2020. Characterization and application of a novel Aeromonas bacteriophage as treatment for pathogenic Aeromonas hydrophila infection in rainbow trout. Aquaculture, 523, 735193 p. [DOI:10.1016/j.aquaculture.2020.735193]
16. Casula, G. and Cutting, S.M., 2002. Bacillus probiotics: spore germination in the gastrointestinal tract. Applied and environmental microbiology, 68(5), pp. 2344-2352. [DOI:10.1128/AEM.68.5.2344-2352.2002] [PMID] []
17. Cha, J.H., Rahimnejad, S., Yang, S.Y., Kim, K.W. and Lee, K.J., 2013. Evaluations of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives. Aquaculture, 402, pp. 50-57. [DOI:10.1016/j.aquaculture.2013.03.030]
18. Dadar, M., Dhama, K., Vakharia, V.N., Hoseinifar, S.H., Karthik, K., Tiwari, R., Khandia, R., Munjal, A., Salgado-Miranda, C. and Joshi, S.K., 2017. Advances in aquaculture vaccines against fish pathogens: global status and current trends. Reviews in Fisheries Science & Aquaculture, 25(3), pp. 184-217. [DOI:10.1080/23308249.2016.1261277]
19. Dıdınen, B.I., Yardımcı, B., Onuk, E.E., Metın, S. and Yıldırım, P., 2014. Naturally Lactococcus garvieae infection in rainbow trout (Oncorhyncus mykiss Walbaum, 1792): new histopathological observations, phenotypic and molecular identification.
20. Docando, F., Nuñez-Ortiz, N., Gonçalves, G., Serra, C.R., Gomez-Casado, E., Martín, D., Abós, B., Oliva-Teles, A., Tafalla, C. and Díaz-Rosales, P., 2022a. Bacillus subtilis Expressing the Infectious Pancreatic Necrosis Virus VP2 Protein Retains Its Immunostimulatory Properties and Induces a Specific Antibody Response. Frontiers in Immunology, 13, p.888311. [DOI:10.3389/fimmu.2022.888311] [PMID] []
21. Docando, F., Nuñez-Ortiz, N., Serra, C.R., Arense, P., Enes, P., Oliva-Teles, A., Díaz-Rosales, P. and Tafalla, C., 2022b. Mucosal and systemic immune effects of Bacillus subtilis in rainbow trout (Oncorhynchus mykiss). Fish & shellfish immunology, 124, pp. 142-155. [DOI:10.1016/j.fsi.2022.03.040] [PMID]
22. Eissa, N., Wang, H.P., Yao, H. and Abou-ElGheit, E., 2018. Mixed Bacillus species enhance the innate immune response and stress tolerance in yellow perch subjected to hypoxia and air-exposure stress. Scientific Reports, 8(1), 6891 p. [DOI:10.1038/s41598-018-25269-z] [PMID] []
23. Eldar, A., Goria, M., Ghittino, C., Zlotkin, A. and Bercovier, H., 1999. Biodiversity of Lactococcus garvieae strains isolated from fish in Europe, Asia, and Australia. Applied and Environmental Microbiology, 65(3), pp. 1005-1008. [DOI:10.1128/AEM.65.3.1005-1008.1999] [PMID] []
24. Ellman, G.L., 1959. Tissue sulphydryl groups. Arch. Biochem. Biophys. 82, 70-77. [DOI:10.1016/0003-9861(59)90090-6] [PMID]
25. El-Saadony, M.T., Alagawany, M., Patra, A.K., Kar, I., Tiwari, R., Dawood, M.A., Dhama, K. and Abdel-Latif, H.M., 2021. The functionality of probiotics in aquaculture: An overview. Fish & Shellfish Immunology, 117, pp. 36-52. [DOI:10.1016/j.fsi.2021.07.007] [PMID]
26. Emam, A.M. and Dunlap, C.A., 2020. Genomic and phenotypic characterization of Bacillus velezensis AMB-y1; a potential probiotic to control pathogens in aquaculture. Antonie Van Leeuwenhoek, 113(12), pp. 041-2052. 5 [DOI:10.1007/s10482-020-01476-] [PMID]
27. Erlanger, D.F., Kokowski, N. and Cohen, W., 1961. Proteinases activity in biological substrats. Arch. Biochem. Biophys, 95(2), pp. 271-278. [DOI:10.1016/0003-9861(61)90145-X] [PMID]
28. FAO, 2021. Fisheries and Aquaculture Department fishery statistical collections global aquaculture production. https://www.fao.org/fishery/en/collection/aquaculture?lang=en.
29. Ghanei-Motlagh, R., Mohammadian, T., Gharibi, D., Khosravi, M., Mahmoudi, E., Zarea, M., El-Matbouli, M. and Menanteau-Ledouble, S., 2021. Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato-biochemical parameters and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer). Aquaculture, 531, 735874 p.. [DOI:10.1016/j.aquaculture.2020.735874]
30. Ghosh, K., Ray, A.K. and Ringø, E., 2019. Applications of plant ingredients for tropical and subtropical freshwater finfish: possibilities and challenges. Reviews in Aquaculture, 11(3), pp. 793-815. [DOI:10.1111/raq.12258]
31. Giatsis, C., Sipkema, D., Ramiro-Garcia, J., Bacanu, G.M., Abernathy, J., Verreth, J., Smidt, H. and Verdegem, M., 2016. Probiotic legacy effects on gut microbial assembly in tilapia larvae. Scientific reports, 6(1), 33965 p. [DOI:10.1038/srep33965] [PMID] []
32. Gisbert, E., Mozanzadeh, M.T., Kotzamanis, Y. and Estévez, A., 2016. Weaning wild flathead grey mullet (Mugil cephalus) fry with diets with different levels of fish meal substitution. Aquaculture, 462, pp. 92-100. [DOI:10.1016/j.aquaculture.2016.04.035]
33. Gołaś, I. and Potorski, J.A., 2022. The influence of commercial feed supplemented with Carnobacterium maltaromaticum environmental probiotic bacteria on the rearing parameters and microbial safety of juvenile rainbow trout. Animals, 12(23), 3321 p. [DOI:10.3390/ani12233321] [PMID] []
34. Guo, X., Chen, D.D., Peng, K.S., Cui, Z.W., Zhang, X.J., Li, S. and Zhang, Y.A., 2016. Identification and characterization of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed. Fish & Shellfish Immunology, 52, pp. 74-84. [DOI:10.1016/j.fsi.2016.03.017] [PMID]
35. He, S., Liu, W., Zhou, Z., Mao, W., Ren, P., Marubashi, T. and Ringø, E., 2011. Evaluation of probiotic strain Bacillus subtilis C-3102 as a feed supplement for koi carp (Cyprinus carpio). J Aquac Res Dev S, 1(5). [DOI:10.4172/2155-9546.S1-005]
36. Hoseinifar, S.H., Van Doan, H., Dadar, M., Ringø, E. and Harikrishnan, R., 2019. Feed additives, gut microbiota, and health in finfish aquaculture. Microbial communities in aquaculture ecosystems: Improving productivity and sustainability, pp. 121-142. [DOI:10.1007/978-3-030-16190-3_6]
37. Iijima, N., Tanaka, S. and Ota, Y., 1998. Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish physiology and Biochemistry, 18, pp. 59-69. [DOI:10.1023/A:1007725513389]
38. Kavitha, M., Raja, M. and Perumal, P., 2018. Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822). Aquaculture Reports, 11, pp. 59-69. [DOI:10.1016/j.aqrep.2018.07.001]
39. Khan, M.I.R., Choudhury, T.G., Kamilya, D., Monsang, S.J. and Parhi, J., 2021. Characterization of Bacillus spp. isolated from intestine of Labeo rohita-Towards identifying novel probiotics for aquaculture. Aquaculture Research, 52(2), pp. 822-830. [DOI:10.1111/are.14937]
40. Kong, W., Huang, C., Tang, Y., Zhang, D., Wu, Z. and Chen, X., 2017. Effect of Bacillus subtilis on Aeromonas hydrophila-induced intestinal mucosal barrier function damage and inflammation in grass carp (Ctenopharyngodon idella). Scientific Reports, 7(1), 1588 p. [DOI:10.1038/s41598-017-01336-9] [PMID] []
41. Kuebutornye, F.K., Abarike, E.D. and Lu, Y., 2019. A review on the application of Bacillus as probiotics in aquaculture. Fish & Shellfish Immunology, 87, pp. 820-828. [DOI:10.1016/j.fsi.2019.02.010] [PMID]
42. Kuebutornye, F.K., Abarike, E.D., Sakyi, M.E., Lu, Y. and Wang, Z., 2020a. Modulation of nutrient utilization, growth, and immunity of Nile tilapia, Oreochromis niloticus: the role of probiotics. Aquaculture International, 28, pp. 277-291. [DOI:10.1007/s10499-019-00463-6]
43. Lazado, C.C. and Caipang, C.M.A., 2014. Mucosal immunity and probiotics in fish. Fish & shellfish immunology, 39(1), pp. 78-89. [DOI:10.1016/j.fsi.2014.04.015] [PMID]
44. Lazado, C.C., Caipang, C.M.A. and Estante, E.G., 2015. Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish & shellfish immunology, 45(1), pp. 2-12. [DOI:10.1016/j.fsi.2015.02.023] [PMID]
45. Lee, S., Lee, J., Jin, Y.I., Jeong, J.C., Chang, Y.H., Lee, Y., Jeong, Y. and Kim, M., 2017b. Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce. LWT-Food Science and Technology, 79, pp. 518-524. [DOI:10.1016/j.lwt.2016.08.040]
46. Lin, H.L., Shiu, Y.L., Chiu, C.S., Huang, S.L. and Liu, C.H., 2017. Screening probiotic candidates for a mixture of probiotics to enhance the growth performance, immunity, and disease resistance of Asian seabass, Lates calcarifer (Bloch), against Aeromonas hydrophila. Fish & Shellfish Immunology, 60, pp. 474-482. http://dx.doi.org/10.1016/j.fsi.2016.11.026 [DOI:10.1016/j.fsi.2016.11.026] [PMID]
47. Liu, S., Wang, S., Cai, Y., Li, E., Ren, Z., Wu, Y., Guo, W., Sun, Y. and Zhou, Y., 2020. Beneficial effects of a host gut-derived probiotic, Bacillus pumilus, on the growth, non-specific immune response and disease resistance of juvenile golden pompano, Trachinotus ovatus. Aquaculture, 514, 734446 p. [DOI:10.1016/j.aquaculture.2019.734446]
48. Mohammadian, T., Nasirpour, M., Tabandeh, M.R., Heidary, A.A., Ghanei-Motlagh, R. and Hosseini, S.S., 2019. Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish & shellfish immunology, 86, pp. 269-279. [DOI:10.1016/j.fsi.2018.11.052] [PMID]
49. Mohapatra, S., Chakraborty, T., Kumar, V., DeBoeck, G. and Mohanta, K.N., 2013. Aquaculture and stress management: a review of probiotic intervention. Journal of animal physiology and animal nutrition, 97(3), pp.405-430. https://doi.org/10.1111/j.1439-0396.2012.01301.x [DOI:10.1111/j.1439-0396.2012.01301.x.] [PMID]
50. Moustafa, E.M., Farrag, F.A., Dawood, M.A., Shahin, K., Hamza, A., Decamp, O., Mohamed, R., Elsabagh, M., Eltholth, M. and Omar, A.A., 2021. Efficacy of Bacillus probiotic mixture on the immunological responses and histopathological changes of Nile tilapia (Oreochromis niloticus, L) challenged with Streptococcus iniae. Aquaculture Research, 52(5), pp.2205-2219. [DOI:10.1111/are.15073]
51. Nair, A.V., Antony, M.L., Praveen, N.K., Sayooj, P., Swaminathan, T.R. and Vijayan, K.K., 2021. Evaluation of in vitro and in vivo potential of Bacillus subtilis MBTDCMFRI Ba37 as a candidate probiont in fish health management. Microbial Pathogenesis, 152, 104610 p. [DOI:10.1016/j.micpath.2020.104610] [PMID]
52. Nayak, S.K., 2021. Multifaceted applications of probiotic Bacillus species in aquaculture with special reference to Bacillus subtilis. Reviews in Aquaculture, 13(2), pp. 862-906. [DOI:10.1111/raq.12503]
53. Newaj‐Fyzul, A., Adesiyun, A.A., Mutani, A., Ramsubhag, A., Brunt, J. and Austin, B., 2007. Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). Journal of applied microbiology, 103(5), pp. 1699-1706. [DOI:10.1111/j.1365-2672.2007.03402.x] [PMID]
54. OECD/FAO, 2019. OECD-FAO Agricultural Outlook 2019-2028. OECD/FAO, Rome, Italy.
55. Olmos, J. and Paniagua-Michel, J., 2014. Bacillus subtilis a potential probiotic bacterium to formulate functional feeds for aquaculture. J. Microb. Biochem. Technol, 6(7), pp. 361-365. [DOI:10.4172/1948-5948.1000169]
56. Olmos, J., Acosta, M., Mendoza, G. and Pitones, V., 2020. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Archives of microbiology, 202, pp. 427-435. https://ui.adsabs.harvard.edu/link_gateway/2022AqInt..30..581G/doi:10.1007/s10499-021-00821-3 [DOI:10.1007/s10499-021-00821-3]
57. Pérez‐Sánchez, T., Ruiz‐Zarzuela, I., de Blas, I. and Balcázar, J.L., 2014. Probiotics in aquaculture: a current assessment. Reviews in Aquaculture, 6(3), pp. 133-146. https://doi.org/10.1111/raq.12033 [DOI:10.1111/RAQ.12033]
58. Raissy, M., Hashemi, S., Roushan, M., Jafarian, M., Momtaz, H., Soltani, M. and Pirali Kheirabad, E., 2018. Effects of essential oils of Satureja bachtiarica and Nigella sativa on the efficacy of lactococcosis vaccine in rainbow trout (Oncorhynchus mykiss). http://hdl.handle.net/1834/12279
59. Rajan, M.R. and Sabitha, A., 2024. Isolation, identification, enzyme productivity and antibacterial activity of intestinal bacteria of Blue morph Maylandia lombardoi and its role on growth. Sustainability, Agri, Food and Environmental Research, 12(1). [DOI:10.7770/safer-V12N1-art2586]
60. Ramesh, D., Vinothkanna, A., Rai, A.K. and Vignesh, V.S., 2015. Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila. Fish & Shellfish Immunology, 45(2), pp. 268-276. [DOI:10.1016/j.fsi.2015.04.018] [PMID]
61. Ray, A.K., Mondal, S. and Roy, T., 2012, June. Optimization of culture conditions for production of protease by two bacterial strains, Bacillus licheniformis BF2 and Bacillus subtilis BH4 isolated from the digestive tract of bata, Labeo bata (Hamilton). In Proceedings of the Zoological Society, 65, pp. 33-39). Springer-Verlag. [DOI:10.1007/s12595-012-0026-3]
62. Reverter, M., Sarter, S., Caruso, D., Avarre, J.C., Combe, M., Pepey, E., Pouyaud, L., Vega-Heredía, S., de Verdal, H., Gozlan, R.E., 2020. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun., 11(1), 1-8. https://doi.org/10.1038/s41467-020-15735-6 [DOI:10.1038/s41467-020-15735-6.] [PMID] []
63. Rifai, N., 2017. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics-E-Book: Tietz Textbook of Clinical Chemistry and Molecular Diagnostics-E-Book. Elsevier Health Sciences.
64. Ringø, E., Van Doan, H., Lee, S.H., Soltani, M., Hoseinifar, S.H., Harikrishnan, R. and Song, S.K., 2020. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. Journal of Applied Microbiology, 129(1), pp. 116-136. [DOI:10.1111/jam.14628] [PMID]
65. Sahraei, F., Ahari, H. and Kakoolaki, S., 2019. Effect of Bacillus subtilis as a probiotic on protein, lipid content, and trypsin and chymotrypsin enzymes in rainbow trout biometry (Oncorhynchus mykiss). Aquaculture International, 27, pp. 141-153. [DOI:10.1007/s10499-018-0313-8]
66. Sharifuzzaman, S.M. and Austin, B., 2009. Influence of probiotic feeding duration on disease resistance and immune parameters in rainbow trout. Fish & Shellfish Immunology, 27(3), pp. 440-445. [DOI:10.1016/j.fsi.2009.06.010] [PMID]
67. Soltani, M., Ghosh, K., Hoseinifar, S.H., Kumar, V., Lymbery, A.J., Roy, S. and Ringø, E., 2019. Genus Bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture, 27(3), pp. 331-379. [DOI:10.1080/23308249.2019.1597010]
68. Sun, Y.Z., Yang, H.L., Ma, R.L., Song, K. and Li, J.S., 2012. Effect of Lactococcus lactis and Enterococcus faecium on growth performance, digestive enzymes and immune response of grouper Epinephelus coioides. Aquaculture Nutrition, 18(3), pp.281-289. https://ui.adsabs.harvard.edu/link_gateway/2012AqNut..18..281S/doi:10.1111/j.1365-2095.2011.00894.x [DOI:10.1111/j.1365-2095.2011.00894.x]
69. Tachibana, L., Telli, G.S., Dias, D.D.C., Goncalves, G.S., Guimaraes, M.C., Ishikawa, C.M., Cavalcante, R.B., Natori, M.M., Fernandez Alarcon, M.F., Tapia‐Paniagua, S. and Morinigo, M.A., 2021. Bacillus subtilis and Bacillus licheniformis in diets for Nile tilapia (Oreochromis niloticus): Effects on growth performance, gut microbiota modulation and innate immunology. Aquaculture Research, 52(4), pp. 1630-1642. [DOI:10.1111/are.15016]
70. Tarkhani, R., Imani, A., Hoseinifar, S.H., Moghanlou, K.S. and Manaffar, R., 2020. The effects of host-associated Enterococcus faecium CGMCC1. 2136 on serum immune parameters, digestive enzymes activity and growth performance of the Caspian roach (Rutilus rutilus caspicus) fingerlings. Aquaculture, 519, 734741 p. [DOI:10.1016/j.aquaculture.2019.734741]
71. Van Doan, H., Hoseinifar, S.H., Ringø, E., Ángeles Esteban, M., Dadar, M., Dawood, M.A. and Faggio, C., 2020. Host-associated probiotics: a key factor in sustainable aquaculture. Reviews in fisheries science & aquaculture, 28(1), pp. 16-42. [DOI:10.1080/23308249.2019.1643288]
72. Wang, C., Chuprom, J., Wang, Y. and Fu, L., 2020. Beneficial bacteria for aquaculture: nutrition, bacteriostasis and immunoregulation. Journal of Applied Microbiology, 128(1), pp. 28-40. [DOI:10.1111/jam.14383] [PMID]
73. Yano, T., 1992. Assay of hemolytic complement activity. Techniques in fish immunology, pp. 131-141.
74. Yılmaz, S., Ergun, S., Yigit, M. and Çelik, E.Ş., 2020. Effect of combination of dietary Bacillus subtilis and trans‐cinnamic acid on innate immune responses and resistance of rainbow trout, Oncorhynchus mykiss to Yersinia ruckeri. Aquaculture Research, 51(2), pp. 441-454. http://doi.org/10.1111/are.14379 [DOI:10.1111/are.14379]
75. Zhang, Z., Zhang, H.L., Yang, D.H., Hao, Q., Yang, H.W., Meng, D.L., Meindert de Vos, W., Guan, L.L., Liu, S.B., Teame, T. and Gao, C.C., 2024. Lactobacillus rhamnosus GG triggers intestinal epithelium injury in zebrafish revealing host dependent beneficial effects. iMeta, 3(2), p.e181. [DOI:10.1002/imt2.181] [PMID] []
76. Zhou, C., Wang, H., Li, X., Luo, Y., Xie, M., Wu, Z. and Chen, X., 2019a. Regulatory effect of Bacillus subtilis on cytokines of dendritic cells in grass carp (Ctenopharyngodon idella). International Journal of Molecular Sciences, 20(2), 389 p. [DOI:10.3390/ijms20020389] [PMID] []
77. Zhou, S., Song, D., Zhou, X., Mao, X., Zhou, X., Wang, S., Wei, J., Huang, Y., Wang, W., Xiao, S.M. and Qin, Q., 2019b. Characterization of Bacillus subtilis from gastrointestinal tract of hybrid Hulong grouper (Epinephelus fuscoguttatus× E. lanceolatus) and its effects as probiotic additives. Fish & Shellfish Immunology, 84, pp. 1115-1124. [DOI:10.1016/j.fsi.2018.10.058] [PMID]



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bashiri M, Soltani M, Pirali Kheirabadi E, Mirzargar S, Shafiei S, Momeni H. Research Article: Efficacy of dietary supplementation with endogenous Bacillus subtilis on growth performance, immune response and gene expression of juvenile rainbow trout (Oncorhynchus mykiss). Sustainable Aquaculture. Health. Management. J. 2024; 10 (2) :76-110
URL: http://ijaah.ir/article-1-282-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 2 (2024) Back to browse issues page
Persian site map - English site map - Created in 0.07 seconds with 44 queries by YEKTAWEB 4710