Research Article: Immune-enhancing and protective effects of lactobacillus delbrueckii bulgaricus on common carp vaccinated against Aeromonas hydrophila
|
M.A.K. Aakool1 , M. Alishahi *2 , R. Peyghan3 , M. Khosravi4 , D. Gharibi3  |
1- PhD student, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, & Department of Poultry and Fish Diseases, Veterinary Hospital in Wasit, Veterinary Directorate, Ministry of Iraqi Agri-culture, Wasit, Iraq 2- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz & Centre of Excellence for Warm Water Fish Health and disease, Shahid Chamran University of Ahvaz, Ahvaz, Iran. 3- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran & Centre of Excellence for Warm Water Fish Health and disease, Shahid Chamran University of Ahvaz, Ahvaz, Iran. 4- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran |
|
Abstract: (503 Views) |
In this study, effect of lactobacillus delbrueckii bulgaricus (L. bulgaricus), both in its free form and microencapsulated with alginate/chitosan, on immunity and efficacy of Aeromonas hydrophila vaccine was assessed in common carp. A total of 360 common carp (48±5.1 g) were randomly divided in four groups, each in tree replicates.
*Corresponding author’s email: alishahim@scu.ac.ir
Groups 1 to 3 were vaccinated against A. hydrophila and fed diets supplemented with basal diet, L. bulgaricus-treated feed, and encapsulated L. bulgaricus -treated feed, respectively, and group 4 was considered as the control. Samples were taken on days zero, 30 and 60 of the experiment. Growth performance indices (including FCR, SGR, PER, and FER) and immunological parameters (antibody titer, serum lysozyme, complement and bactericidal activity, NBT reduction, globulin levels, and myeloperoxidase activity) were evaluated. Additionally, hematological parameters (RBC, WBC, Hb, and Hct), intestinal enzyme activities (lipase, protease, amylase, and ALP), antioxidant status (maladeyaldehide (MDA) levels, superoxide dismutase (SOD), glutathione (GSH), and catalase activity), and serum biochemical indices (glucose, urea, calcium, triglycerides, ALP, CPK, and bilirubin) were compared among the groups. On day 60 of the experiment, the remaining fish in each group were challenged with virulent A. hydrophila, and cumulative mortality was recorded over a 14-day period. The results indicated that group 3 exhibited the highest growth indices and intestinal enzyme activity. Most of the immune parameters showed a significant increase in groups 3 and 2 compared to control group (p<0.05). Hematological and biochemical parameters remained consistent across all groups (p>0.05). Following the challenge, the mortality rates were lower in groups 3 (20%) and 2 (30%) compared to control group (60%). Overall, these data exhibited that administration of L. bulgaricus is able to enhance efficacy and immunogenicity of injectable A. hydrophila vaccine. Also, alginate/chitosan-microencapsulation of this probiotic further amplifies its positive effects on the vaccine's efficacy. |
|
Keywords: Aeromonas hydrophila vaccine, Lactobacillus delbrueckii bulgaricus, Common carp, Immunogenicity |
|
Full-Text [PDF 825 kb]
(139 Downloads)
|
Type of Study: Original research papers |
Subject:
Vaccination Received: 2024/09/4 | Accepted: 2025/02/28 | Published: 2025/02/28
|
|
|
|
|
References |
1. Ahmad, M. G., Kulshreshtha, J. B. and Singh, G., 2011. Growth and pigment profile of Spirulina platensis isolated from Rajasthan, India. Research Journal of Agricultural Sciences, 2(1), 1, pp. 83-86. 2. Aebi, H. (1974). Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. [ DOI:10.1016/B978-0-12-091302-2.50032-3] 3. Ahmadmoradi, M., Alishahi, M., Soltanian, S., Shahriari, A., and Yektaseresht, A. (2024). Effects of encapsulation of Lactobacillus plantarum on probiotic potential and reducing lead toxicity in rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture International, 32(1), 337-359. [ DOI:10.1007/s10499-023-01164-x] 4. Akter, F., Mannan, A., Mehedi, H. H., Rob, M. A., Ahmed, S., Salauddin, A., ... and Hasan, M. M. (2020). Clinical characteristics and short term outcomes after recovery from COVID-19 in patients with and without diabetes in Bangladesh. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(6), 2031-2038. nih.gov [ DOI:10.1016/j.dsx.2020.10.016] [ PMID] [ ] 5. Alishahi M, Tulaby Dezfuly Z, Mesbah M (2018) Effects of alcoholic and aqueous extract of propolis on growth performance, hemato-immunological parameters and disease resistance of common carp (Cyprinus carpio). Turk J Fish Aqua Sci 18: 1245-1254. [ DOI:10.4194/1303-2712-v18_11_01] 6. Alishahi M, Tollabi M, Ghorbanpour M (2019) Comparison of the adjuvant effect of propolis and Freund on the efficacy of Aeromonas hydrophila vaccine in common carp (Cyprinus carpio). Iran J Fish Sci 18(3): 428-444. DOI; 10.22092/ijfs.2019.118393 7. Alishahi, M., Shirali, T., Tabandeh, M. R., and Ghorbanpour, M. (2022). Influence of p-coumaric acid, as a medicinal plant phenolic compound, on expression of virulence genes and pathogenicity of Aeromonas hydrophila in common carp. Aquaculture International, 30(6), 2997-3016. [HTML] [ DOI:10.1007/s10499-022-00947-y] 8. Alishahi, M., Vaseghi, M., Tabandeh, M. R., and Khosravi, M. (2024). Immunogenic and protective effects of an oral polylactic-co-glycolic acid nano encapsulated DNA vaccine encoding aopB gene of Aeromonas hydrophila in common carp. Aquaculture International, 32(2), 1169-1190. [ DOI:10.1007/s10499-023-01211-7] 9. Andani H, Tukmechi A, Meshkini S, Sheikhzadeh N (2012) Antagonistic activity of two potential probiotic bacteria from fish intestines and investigation of their effects on growth performance and immune response in rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 28(5):728-734. [ DOI:10.1111/j.1439-0426.2012.01974.x] 10. Anson, M. L. (1938). The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. The Journal of general physiology, 22(1), 79. [ DOI:10.1085/jgp.22.1.79] [ PMID] [ ] 11. Areekijseree, M., Engkagul, A., Kovitvadhi, U., Thongpan, A., Mingmuang, M., Pakkong, P., and Rungruangsak-Torrissen, K. (2004). Temperature and pH characteristics of amylase and proteinase of adult freshwater pearl mussel, Hyriopsis (Hyriopsis) bialatus Simpson 1900. Aquaculture, 234(1-4), 575-587 [ DOI:10.1016/j.aquaculture.2003.12.008] 12. Asadi Khomami, S., Mooraki, N., Valipour, A., and Kakoolaki, S. (2016). The effects of dietary probiotic Pediococcus acidilactici on the growth performance and survival rate of oriental bream fry (Abramis brama orientalis). Sustainable Aquaculture and Health Management Journal, 2(2), 55-66. [ DOI:10.18869/acadpub.ijaah.2.2.55] 13. Ashouri, G., Soofiani, N. M., Hoseinifar, S. H., Jalali, S. A. H., Morshedi, V., Van Doan, H., and Mozanzadeh, M. T. (2018). Combined effects of dietary low molecular weight sodium alginate and Pediococcus acidilactici MA18/5M on growth performance, haematological and innate immune responses of Asian sea bass (Lates calcalifer) juveniles. Fish and shellfish immunology, 79, 34-41. [ DOI:10.1016/j.fsi.2018.05.009] [ PMID] 14. Assan, D., Kuebutornye, F. K. A., Hlordzi, V., Chen, H., Mraz, J., Mustapha, U. F., and Abarike, E. D. (2022). Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini review. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 257, 110653. [ DOI:10.1016/j.cbpb.2021.110653] [ PMID] 15. Bavia, L., Santiesteban-Lores, L. E., Carneiro, M. C., and Prodocimo, M. M. (2022). Advances in the complement system of a teleost fish, Oreochromis niloticus. Fish and Shellfish Immunology, 123, 61-74. [ DOI:10.1016/j.fsi.2022.02.013] [ PMID] 16. Beutler, E., Duron, O., and Kelly, B. M. (1963). Improved method for determination of blood glutathione. 17. Borlongan, I. G. (1990). Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture, 89(3-4), 315-325. [ DOI:10.1016/0044-8486(90)90135-A] 18. Boshra H, Li J, and Sunyer JO, (2006). Recent advances on the complement system of teleost fish. Fish and shellfish immunology, 20(2), 239-262. [ DOI:10.1016/j.fsi.2005.04.004] [ PMID] 19. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. [ DOI:10.1016/0003-2697(76)90527-3] 20. Dezfuly, Z. T., Alishahi, M., Ghorbanpoor, M., Tabandeh, M. R., and Mesbah, M. (2020). Immunogenicity and protective efficacy of Yersinia ruckeri lipopolysaccharide (LPS), encapsulated by alginate-chitosan micro/nanoparticles in rainbow trout. Fish and shellfish immunology, 104, 25-35. [ DOI:10.1016/j.fsi.2020.05.029] [ PMID] 21. Ellis, A. E. (1990) Lysozyme assays. Techniques in Fish Immunology, 101-103. 22. El-Rhman, A.M.A., Khattab, Y.A., Shalaby, A.M. (2009). Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis n loticus, Fish Shellfish Immunol. 27, 175-180. [ DOI:10.1016/j.fsi.2009.03.020] [ PMID] 23. Erlanger, B. F., Kokowsky, N., and Cohen, W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Archives of biochemistry and biophysics, 95(2), 271-278. [ DOI:10.1016/0003-9861(61)90145-X] [ PMID] 24. Esmaeili, H. R. (2021). Exotic and invasive freshwater fishes in the Tigris-Euphrates River system. Tigris and Euphrates Rivers: Their Environment from Headwaters to Mouth, 1103-1140. [HTML] [ DOI:10.1007/978-3-030-57570-0_51] 25. Farias, T. H. V., Arijo, S., Medina, A., Pala, G., da Rosa Prado, E. J., Montassier, H. J., ... and de Andrade Belo, M. A. (2020). Immune responses induced by inactivated vaccine against Aeromonas hydrophila in pacu, Piaractus mesopotamicus. Fish and shellfish immunology, 101, 186-191. [HTML] [ DOI:10.1016/j.fsi.2020.03.059] [ PMID] 26. Fazio, F. (2019). Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture, 500, 237-242. [ DOI:10.1016/j.aquaculture.2018.10.030] 27. Firouzbakhsh, F., Noori, F., Khalesi, M.K., Jani-Khalili, K. (2011). Effects of a probiotic, protexin, on the growth performance and hematological parameters in the Oscar (Astronotus ocellatus) finge lings,Fish Physiol. Biochem. 37, 833-842. [ DOI:10.1007/s10695-011-9481-4] [ PMID] 28. Gawlicka, A., Parent, B., Horn, M.H., Ross, N., Opstad, I ,.Torrissen, O.J. (2000). Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of rea iness for first feeding, Aquaculture. 184, 303-314. [ DOI:10.1016/S0044-8486(99)00322-1] 29. Ghanei-Motlagh R., Gharibi D., Mohammadian T., Khosravi M., Mahmoudi E., (2021). Feed supplementation with quorum quenching probiotics with anti-virulence potential improved innate immune r sponses, antioxidant capacity and disease resistance in Asian seabass (Lates calcarifer). Aquaculture, 535: 736345. [ DOI:10.1016/j.aquaculture.2021.736345] 30. Ghanei-Motlagh R., Mohammadian T., Gharibi D., Khosravi M., Mahmoudi E., Z a r e a M. (2020). Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato-biochemical parameters and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer). Aquaculture, 531: 735874. [ DOI:10.1016/j.aquaculture.2020.735874] 31. Gilani, I. E., Hosseini, H., Al Ghouti, M., Saadaoui, I., and Sayadi, S. (2024). Microalgal-based desalination brine remediation: Achievements, challenges, and future research trends. Environmental Technology and Innovation, 103592. sciencedirect.com [ DOI:10.1016/j.eti.2024.103592] 32. Giri, S.S., Yu n S., J u n J.W., K i m H.J., K i m S.G., K a n g J.W. (2018). Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio. Front. Immunol., 9: 1824. [ DOI:10.3389/fimmu.2018.01824] [ PMID] [ ] 33. Grotto D., Maria L.S., Valentini J., Paniz C., Schmitt G.(2009). Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quimica Nova, 32: 169-174. [ DOI:10.1590/S0100-40422009000100032] 34. Guimarães, M. C., Cerezo, I. M., Fernandez-Alarcon, M. F., Natori, M. M., Sato, L. Y., Kato, C. A., ... and Tachibana, L. (2022). Oral administration of probiotics (Bacillus subtilis and lactobacillus plantarum) in Nile tilapia (Oreochromis niloticus) vaccinated and challenged with streptococcus agalactiae. Fishes, 7(4), 211. [ DOI:10.3390/fishes7040211] 35. Hooshyar Y., Abedian Kenari A., Paknejad H., Gandomi H. (2020). Effects of Lactobacillus rhamnosus ATCC 7469 on different parameters related to health status of rainbow trout (Oncorhynchus mykiss) and the protection againstYersinia ruckeri. Prob. Antimicrob. Prot., 12: 1370-1384. [ DOI:10.1007/s12602-020-09645-8] [ PMID] 36. Hoseinifar et al. (2016). Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Frontiers in Microbiology, 7, 242. 37. Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonn (2020). Oxidative stress and antioxidant defense in fish: the implications of probiotic, prebiotic, and synbiotics. Rev. Fish. Sci. Aquacult., 1-20. [ DOI:10.1080/23308249.2020.1795616] 38. Hossain, S., and Heo, G. J. (2021). Ornamental fish: a potential source of pathogenic and multidrug‐resistant motile Aeromonas spp. Letters in Applied Microbiology, 72(1), 2-12.
https://doi.org/10.1111/lam.13373 [ DOI:10.1111/lam.13162] [ PMID] 39. Hosseini, S. S., Alishahi, M., Amini, K., Ghorbanpour, M., and Mohammadian, T. (2022). Microencapsulation of Lactobacillus bulgaricus with alginate-chitosan improves probiotic potency in great sturgeon (Huso huso). Aquaculture International, 30(6), 3247-3268. [ DOI:10.1007/s10499-022-00959-8] 40. Huiyi S, Yu W, Gao M, Liu X, and Ma X (2013) Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process. Carbohydrate polymers, 96(1), 181-189. [ DOI:10.1016/j.carbpol.2013.03.068] [ PMID] 41. Irianto, A., Austin, B., 2002. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum), J. Fish Dis. 25, 333-342. [ DOI:10.1046/j.1365-2761.2002.00375.x] 42. Jang W.J., L e e J.M., H a s a n M.T., L e e B.J., L i m S.G., K o n g I.S. (2019). Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity, digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 92: 719-727. [ DOI:10.1016/j.fsi.2019.06.056] [ PMID] 43. McCord, J. M., and Fridovich, I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological chemistry, 244(22), 6049-6055. [ DOI:10.1016/S0021-9258(18)63504-5] [ PMID] 44. Mohammadian T., Alishahi M., Tabandeh M.R., Ghorbanpoor M., Gharibi D., To l la b i M., R o ha n i z a d e S. (2016). Probiotic effects of Lactobacillus plantarum and L. del- brueckii ssp. bulguricus on some immune-related parameters in Barbus grypus. Aquacult. Int., 24: 225-242 [ DOI:10.1007/s10499-015-9921-8] 45. Mohammadian, T., Alishahi, M., Tabandeh, M., Ghorbanpoor, M., Gharibi, D. (2017). Effect of Lactobacillus plantarum and Lactobacillus delbrueckii subsp. bulgaricus on growth perfo mance, gut microbial flora and digestive enzymes activities in Tor grypus (Karaman, 1971), Iran. J. Fish. Sci. 16, 296-317. 46. Mohammadian, T., Nasirpour, M., Tabandeh, M. R., Heidary, A. A., Ghanei-Motlagh, R., and Hosseini, S. S. (2019). Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish and shellfish immunology, 86, 269-279. [ DOI:10.1016/j.fsi.2018.11.052] [ PMID] 47. Mohammadian, T., Monjezi, N., Peyghan, R., and Mohammadian, B. (2022). Effects of dietary probiotic supplements on growth, digestive enzymes activity, intestinal histomorphology and innate immunity of common carp (Cyprinus carpio): A field study. Aquaculture, 549, 737787. [ DOI:10.1016/j.aquaculture.2021.737787] 48. Mohammadian T, Ghanei-Motlagh R, Jalali M, Nasirpour M, Mohtashamipour H, Osroush E, and Nejad AJ. (2022) Protective Effects of non-encapsulated and microencapsulated Subsp. in Rainbow Trout (Oncorhynchus mykiss) exposed to lead (Pb) via diet. Annals of Animal Science, 22(1), 325-348. DOI:
https://doi.org/10.2478/aoas-2021-0026 [ DOI:10.2478/aoas-2021-0026.] 49. Mondal, H. and Thomas, J. (2022). A review on the recent advances and application of vaccines against fish pathogens in aquaculture. Aquaculture international. springer.com [ DOI:10.1007/s10499-022-00884-w] [ PMID] [ ] 50. Mozanzadeh, M. T., Mohammadian, T., Ahangarzadeh, M., Houshmand, H., Najafabadi, M. Z., Oosooli, R., Seyyedi, S., Mehrjooyan, S., Saghavi, H., Sephdari, A., Mirbakhsh, M., and Osroosh, E. (2023). Feeding Strategies with Multi-Strain Probiotics Affect Growth, Health Condition, and Disease Resistance in Asian Seabass (Lates calcarifer). Probiotics and antimicrobial proteins, 10.1007/s12602-023-10207-x. Advance online publication. [ DOI:10.1007/s12602-023-10207-x] 51. Nayak, S. K. (2020). Current prospects and challenges in fish vaccine development in India with special reference to Aeromonas hydrophila vaccine. Fish and shellfish immunology. [HTML] [ DOI:10.1016/j.fsi.2020.01.064] [ PMID] 52. Nayak, S. K., Dash, J. P., and Dutta, P. (2022). Biotechnological interventions in developing vaccines against Aeromonas infection in aquaculture. In Biotechnological Advances in Aquaculture Health Management (pp. 79-100). Singapore: Springer Nature Singapore. [ DOI:10.1007/978-981-16-5195-3_5] 53. Neissi, A., Rafiee, G., Nematollahi, M., and Safari, O. (2013). The effect of Pediococcus acidilactici bacteria used as probiotic supplement on the growth and non-specific immune responses of green terror, Aequidens rivulatus. Fish and shellfish immunology, 35(6), 1976-1980. [ DOI:10.1016/j.fsi.2013.09.036] [ PMID] 54. Otto, A., Oliver, H., and Jane, M. (1946). A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. Journal of biological chemistry, 164(3), 321-329. [ DOI:10.1016/S0021-9258(18)43072-4] [ PMID] 55. Puvanasundram, P., Chong, C. M., Sabri, S., Yusoff, M. S., and Karim, M. (2021). Multi-strain probiotics: Functions, effectiveness and formulations for aquaculture applications. Aquaculture Reports, 21, 100905. sciencedirect.com [ DOI:10.1016/j.aqrep.2021.100905] 56. Radkhah, K., Peyghan, R., Alishahi, M., Tabandeh, M. R., and Khosravi, M. (2024). Study on immune-enhancing and protective effects of three Lactobacillus species on Nile tilapia (Oreochromis niloticus) vaccinated against Streptococcus agalactiae. Iranian Veterinary Journal, 20(1). 57. Sahu, M. K., Swarnakumar, N. S., Sivakumar, K., Thangaradjou, T., and Kannan, L. (2013). Probiotics in aquaculture: importance and future perspectives. Indian journal of microbiology, 48, 299-308. [ DOI:10.1007/s12088-008-0024-3] [ PMID] [ ] 58. Pinpimai K., Rodkhum C., Chansue N., Katagiri T., Maita M., Pirarat N. (2015).The study on the candidate probiotic properties of encapsulated yeast, Saccharomyces cerevisiae. JCM 7255, in Nile tilapia (Oreochromis niloticus). Res. Vet. Sci., 102: 103-111. [ DOI:10.1016/j.rvsc.2015.07.021] [ PMID] 59. Schulz, P., Terech-Majewska, E., Siwicki, A. K., Kazuń, B., Demska-Zakęś, K., Rożyński, M., and Zakęś, Z. (2020). Effect of different routes of vaccination against Aeromonas salmonicida on rearing indicators and survival after an experimental challenge of Pikeperch (Sander lucioperca) in controlled rearing. Vaccines, 8(3), 476. mdpi.com [ DOI:10.3390/vaccines8030476] [ PMID] [ ] 60. Skov J, Chettri JK, Jaafar RM, Kania PW, Dalsgaard I, Buchmann K. (2018). Effects of soluble immunostimulants on mucosal immune responses in rainbow trout immersion-vaccinated against Yersinia ruckeri. Aquacult 492:237-46. [ DOI:10.1016/j.aquaculture.2018.04.011] 61. Thrall MA. (2004). Veterinary Hematology and Clinical Chemistry. Lippincott Williams and Wilkins, USA, 241;277-288, 402. 62. Van Doan, H., Doolgindachbaporn, S., and Suksri, A. (2014). Effects of low molecular weight agar and Lactobacillus plantarum on growth performance, immunity, and disease resistance of basa fish (Pangasius bocourti, Sauvage 1880). Fish and shellfish immunology, 41(2), 340-345. [ DOI:10.1016/j.fsi.2014.09.015] [ PMID] 63. Van Doan, H., Hoseinifar, S. H., Tapingkae, W., Tongsiri, S., and Khamtavee, P. (2016). Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology, 58, 678-685. [ DOI:10.1016/j.fsi.2016.10.013] [ PMID] 64. Van Doan, H., Hoseinifar, S. H., Tapingkae, W., and Khamtavee, P. (2017). The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology, 62, 139-146. [ DOI:10.1016/j.fsi.2017.01.014] [ PMID] 65. Wang, Q., Ji, W., and Xu, Z. (2020). Current use and development of fish vaccines in China. Fish and shellfish immunology. [HTML] [ DOI:10.1016/j.fsi.2019.12.010] 66. Yousefi M., Hoseini S.M., Vatnikov Y.A., Kulikov E.V., Drukovsky S.G. (2019). Rosemary leaf powder improved growth performance, immune and antioxidant para eters, and crowding stress responses in common carp (Cyprinus carpio) fingerlings. Aquaculture, 505: 473-480. [ DOI:10.1016/j.aquaculture.2019.02.070] 67. Zhu, W., and Su, J. (2022). Immune functions of phagocytic blood cells in teleost. Reviews in Aquaculture, 14(2), 630-646. [ DOI:10.1111/raq.12616]
|
|
Aakool M, Alishahi M, Peyghan R, Khosravi M, Gharibi D. Research Article: Immune-enhancing and protective effects of lactobacillus delbrueckii bulgaricus on common carp vaccinated against Aeromonas hydrophila. Sustainable Aquaculture. Health. Management. J. 2024; 10 (2) :35-64 URL: http://ijaah.ir/article-1-279-en.html
|