[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Abstract in
AWT IMAGE

 
..
Published articles: 117
Acceptance rate: 76.4
Rejection rate: 23.6
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Time for review and publishing
Articles first review mean= 20 days
Articles acceptance mean= 64 days
Articles publishing mean= 3 days
 
..
DOI
   
   
 
..
cross Ref

AWT IMAGE

..
:: Volume 8, Issue 2 (2022) ::
Sustainable Aquaculture. Health. Management. J. 2022, 8(2): 20-30 Back to browse issues page
Research Article: Effect of time‐dependent protein restriction on growth performance, immunity response, and body composition in the stellate sturgeon (Acipenser stellatus)
S. A. A Bagheri Khamkhane * , A Ehsanfar , S. S Mirkhataminasab Langerodi , A Keramat , H Oraji , A Abedian kenari
Abstract:   (1214 Views)
One hundred and fifty stellate sturgeon (Acipenser stellatus, 250 ± 3.24 g) were assembled into 15 round concrete tanks. The tanks were allocated to five treatments with three replications: fed with a diet containing 30% protein for eight weeks (T1); fed with a diet containing 30% protein level in weeks 1, 3, 5, and 7 and fed with a diet containing 35% protein level in weeks 2, 4, 6, and 8 (T2); fed with a diet containing 30% protein in weeks 1, 2, 5, and 6, and fed with a diet containing 35% protein in weeks 3, 4, 7, and 8 (T3); fed with a diet containing 30% in the diet in weeks 1, 2, 3, and 4, and fed with a diet containing of 35% protein in weeks 5, 6, 7, and 8 (T4); and fed with a diet containing 35% for eight weeks (T5). Remarkable effects were recorded in growth efficiency, and T2 and T5 had higher growth than other treatments. No marked difference was seen in the whole body composition. Different feeding strategies affected RBC, WBC, and MCV, and RBC and WBC of fish in the T4 were notably upper than in the other groups. Different feeding strategies had marked differences in lysozyme and ACH50 activity. These results demonstrated that T2 could use as a feeding strategy for stellate sturgeon.
 
Keywords: Stellate sturgeon, Feeding strategy, Protein restriction time
Full-Text [PDF 330 kb]   (292 Downloads)    
Type of Study: Original research papers | Subject: Aquaculture and Health management
Received: 2022/05/23 | Accepted: 2022/11/9 | Published: 2022/11/11
References
1. Bodin, N., Govaerts, B., Abboudi, T., Detavernier, C., De Saeger, S., Larondelle, Y. and Rollin, X., 2009. Protein level affects the relative lysine requirement of growing rainbow trout (Oncorhynchus mykiss) fry. British journal of nutrition, 102(1), 37-53. [DOI:10.1017/S0007114508158986] [PMID]
2. Caruso, G., Denaro, M. G., Caruso, R., Genovese, L., Mancari, F. and Maricchiolo, G., 2012. Short fasting and refeeding in red porgy (Pagrus pagrus, Linnaeus 1758): Response of some hematological, biochemical and nonspecific immune parameters. Marine Environmental Research, 81, 18-25. [DOI:10.1016/j.marenvres.2012.07.003] [PMID]
3. Caruso, G., Denaro, M. G., Caruso, R., Mancari, F., Genovese, L. and Maricchiolo, G., 2011. Response to short term starvation of growth, haematological, biochemical and non-specific immune parameters in European sea bass (Dicentrarchus labrax) and blackspot sea bream (Pagellus bogaraveo). Marine environmental research, 72(1-2), 46-52. [DOI:10.1016/j.marenvres.2011.04.005] [PMID]
4. Dawood, M.A.O. 2021. Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Reviews in Aquaculture, 13(1), 642-663. [DOI:10.1111/raq.12492]
5. Dong, G. F., Yang, Y. O., Yao, F., Wan, Q., Yu, L., Zhou, J. C. and Li, Y., 2013. Responses of yellow catfish (Pelteobagrus fulvidraco Richardson) to low‐protein diets and subsequent recovery. Aquaculture Nutrition, 19(3), 430-439. [DOI:10.1111/j.1365-2095.2012.00978.x]
6. Ellis, A. I. 1990. Lysozyme assays. Techniques in fish immunology, 1, 101-103.
7. Esmaeili, M., Abedian Kenari, A. and Rombenso, A. N., 2017. Effects of fish meal replacement with meat and bone meal using garlic (Allium sativum) powder on growth, feeding, digestive enzymes and apparent digestibility of nutrients and fatty acids in juvenile rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Aquaculture Nutrition, 23(6), 1225-1234. [DOI:10.1111/anu.12491]
8. Falahatkar, B. 2012. The metabolic effects of feeding and fasting in beluga Huso huso. Marine environmental research, 82, 69-75. [DOI:10.1016/j.marenvres.2012.09.003] [PMID]
9. Fournier, V., Gouillou-Coustans, M. F., Metailler, R., Vachot, C., Guedes, M. J., Tulli, F. and Kaushik, S. J., 2002. Protein and arginine requirements for maintenance and nitrogen gain in four teleosts. British Journal of Nutrition, 87(5), 459-469. [DOI:10.1079/BJN2002564] [PMID]
10. Guo, Z., Zhu, X., Liu, J., Han, D., Yang, Y., Lan, Z. and Xie, S., 2012. Effects of dietary protein level on growth performance, nitrogen and energy budget of juvenile hybrid sturgeon, Acipenser baerii♀× A. gueldenstaedtii♂. Aquaculture, 338, 89-95. [DOI:10.1016/j.aquaculture.2012.01.008]
11. Hafedh, Y. A. 1999. Effects of dietary protein on growth and body composition of Nile tilapia, Oreochromis niloticus L. Aquaculture research, 30(5), 385-393. [DOI:10.1046/j.1365-2109.1999.00343.x]
12. Hoseinifar, S. H., Zoheiri, F. and Caipang, C. M., 2016. Dietary sodium propionate improved performance, mucosal and humoral immune responses in Caspian white fish (Rutilus frisii kutum) fry. Fish & Shellfish Immunology, 55, 523-528. [DOI:10.1016/j.fsi.2016.06.027] [PMID]
13. Hosseinpour Aghaei, R., Abedian Kenari, A., Yazdani Sadati, M. A. and Esmaeili, M., 2018. The effect of time‐dependent protein restriction on growth factors, nonspecific immunity, body composition, fatty acids and amino acids in the Siberian sturgeon (Acipenser baerii). Aquaculture Research, 49(9), 3033-3044.‌ [DOI:10.1111/are.13764]
14. Jin, M., Zhou, Q. C., Zhang, W., Xie, F. J., ShenTu, J. K. and Huang, X. L., 2013. Dietary protein requirements of the juvenile swimming crab, Portunus trituberculatus. Aquaculture, 414, 303-308. [DOI:10.1016/j.aquaculture.2013.08.028]
15. Khalil, A. A. H. M., Husseiny, W. E., Fattah, A. F. A. and Ghonimi, W. A. M., 2016. Effect of feeding with different dietary protein levels and starvation on the health, nonspecific immune parameters, behavior and histoarchitectures of fantail goldfish (Carassius auratus L.). Journal of Veterinary Science and Technology, 7(278), 10-4172.
16. Li, P., Gatlin III, D. M. and Neill, W. H., 2007. Dietary supplementation of a purified nucleotide mixture transiently enhanced growth and feed utilization of juvenile red drum, Sciaenops ocellatus. Journal of the World Aquaculture Society, 38(2), 281-286. [DOI:10.1111/j.1749-7345.2007.00096.x]
17. Magnadottir, B. 2010. Immunological control of fish diseases. Marine biotechnology, 12(4), 361-379. [DOI:10.1007/s10126-010-9279-x] [PMID]
18. Mohseni, M., Pourali, H. R., Kazemi, R. and Bai, S. C., 2014. Evaluation of the optimum dietary protein level for the maximum growth of juvenile beluga (Huso huso L. 1758). Aquaculture research, 45(11), 1832-1841.‌ [DOI:10.1111/are.12134]
19. Mohseni, M., Sajjadi, M. and Pourkazemi, M., 2007. Growth performance and body composition of sub‐yearling Persian sturgeon, (Acipenser persicus, Borodin, 1897), fed different dietary protein and lipid levels. Journal of Applied Ichthyology, 23(3), 204-208. [DOI:10.1111/j.1439-0426.2007.00866.x]
20. Navarro, I. and Gutierrez, J., 1995. Fasting and starvation. In Biochemistry and molecular biology of fishes (Vol. 4, 393-434). Elsevier. [DOI:10.1016/S1873-0140(06)80020-2]
21. Pérez-Sánchez, J. 2000. The involvement of growth hormone in growth regulation, energy homeostasis and immune function in the gilthead sea bream (Sparus aurata): a short review. Fish Physiology and Biochemistry, 22(2), 135-144.
22. Sattari, M., 2002. Ichthyology (1): Anatomy and Physiology. Haghshenass Publication. Rasht, Iran, 862p. (in Persian)
23. Sevgili, H., Hoşsu, B., Emre, Y. and Kanyılmaz, M., 2012. Compensatory growth after various levels of dietary protein restriction in rainbow trout, Oncorhynchus mykiss. Aquaculture, 344, 126-134. [DOI:10.1016/j.aquaculture.2012.03.030]
24. Shirvan, S., Falahatkar, B., Noveirian, H. and Abasalizadeh, A., 2013. Effect of long-term starvation and restricted feeding on growth performance and body composition of juvenile Siberian sturgeon (Acipenser baerii Brandt 1869). AqucDocs.
25. Tian, X. and Qin, J. G., 2004. Effects of previous ration restriction on compensatory growth in barramundi Lates calcarifer. Aquaculture, 235(1-4), 273-283.‌ [DOI:10.1016/j.aquaculture.2003.09.055]
26. Venesky, M. D., Wilcoxen, T. E., Rensel, M. A., Rollins-Smith, L., Kerby, J. L. and Parris, M. J., 2012. Dietary protein restriction impairs growth, immunity, and disease resistance in southern leopard frog tadpoles. Oecologia, 169(1), 23-31.‌ [DOI:10.1007/s00442-011-2171-1] [PMID]
27. Wang, Y., Cui, Y., Yang, Y. and Cai, F., 2000. Compensatory growth in hybrid tilapia, Oreochromis mossambicus× O. niloticus, reared in seawater. Aquaculture, 189(1-2), 101-108. [DOI:10.1016/S0044-8486(00)00353-7]
28. Wu, L. X., Deng, H. X., Geng, Z. F. and Wang, G. D., 2006. Effects of protein restriction with subsequent realimentation on growth performance of juvenile Japanese flounder, Paralichthys olivaceus. Acta Ecologica Sinica, 11, 24.‌
29. Wu, L. and Dong, S., 2002. Effects of protein restriction with subsequent realimentation on growth performance of juvenile Chinese shrimp (Fenneropenaeus chinensis). Aquaculture, 210(1-4), 343-358. [DOI:10.1016/S0044-8486(01)00860-2]
30. Xu, J., Wu, P., Jiang, W.D., Liu, Y., Jiang, J., Kuang, S.Y., Tang, L., Tang, W.N., Zhang, Y.A., Zhou, X.Q. and Feng, L., 2016. Optimal dietary protein level improved growth, disease resistance, intestinal immune and physical barrier function of young grass carp (Ctenopharyngodon idella). Fish & shellfish immunology, 55, 64-87. [DOI:10.1016/j.fsi.2016.05.021] [PMID]
31. Yano, T., Hatayama, Y., Matsuyama, H. and Nakao, M., 1988. Titration of the alternative complement pathway activity of representative cultured fishes. Nippon Suisan Gakkaishi (Japanese Edition), 54(6), 1049-1054. [DOI:10.2331/suisan.54.1049]
32. Yu, G., Liu, C., Zheng, Y., Chen, Y., Li, D. and Qin, W., 2021. Meta-analysis in the production chain of aquaculture: A review. Information Processing in Agriculture.
33. Zhao, W., Luo, H., Zhu, W., Yuan, X. and Shao, J., 2021. Effects of time-dependent protein restriction on growth performance, digestibility, and mTOR signaling pathway in juvenile white shrimp Litopenaeus vannamei. Frontiers in Physiology, 12, 379. [DOI:10.3389/fphys.2021.661107] [PMID] [PMCID]


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bagheri Khamkhane S A A, Ehsanfar A, Mirkhataminasab Langerodi S S, Keramat A, Oraji H, Abedian kenari A. Research Article: Effect of time‐dependent protein restriction on growth performance, immunity response, and body composition in the stellate sturgeon (Acipenser stellatus). Sustainable Aquaculture. Health. Management. J. 2022; 8 (2) :20-30
URL: http://ijaah.ir/article-1-257-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (2022) Back to browse issues page
Persian site map - English site map - Created in 0.05 seconds with 44 queries by YEKTAWEB 4660