[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Abstract in
AWT IMAGE

 
..
Published articles: 117
Acceptance rate: 76.4
Rejection rate: 23.6
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Time for review and publishing
Articles first review mean= 20 days
Articles acceptance mean= 64 days
Articles publishing mean= 3 days
 
..
DOI
   
   
 
..
cross Ref

AWT IMAGE

..
:: Volume 7, Issue 2 (2021) ::
Sustainable Aquaculture. Health. Management. J. 2021, 7(2): 7-18 Back to browse issues page
Research Article: Bioaccumulation of different concentrations of Butachlor in the Zebrafish (Danio rerio)
P Arayesh , S Motahari * , R Kazempoor , M Farahani
Abstract:   (2211 Views)
The herbicides used in agriculture threaten aquatic ecosystems and biodiversity on a global scale. There are several reports on the residues of currently used herbicides in the tissues of aquatic organisms. This study aimed to determine the effect of concentration on the accumulation of Butachlor in liver tissue in zebrafish fish exposed to sub-lethal concentrations of the toxin. In this study, we investigated the losses and residual toxins in the water and the liver of the zebrafish exposed to sub-lethal concentrations of Butachlor herbicide. This study was performed on 680 zebrafish. Initially, to determine the LC50-96 h value, a preliminary pilot study was performed, according to which, the main experiment was then conducted considering four treatments each with three replicates for 30 days. The experimental groups included T1 (exposure to 40% of the LC50-96 h concentration of Butachlor), T2 (exposure to 60% of LC50-96 h), T3 (exposure to 80% of LC50-96 h), and control (C). Mortality was recorded daily. Sampling was conducted from water and liver tissues on the first day and the days 15 and 30 to determine Butachlor residues using gas chromatography (GC). The results showed that Butachlor residue in water was associated with the concentration of the toxin and the exposure time, (T3>T2>T1 groups; p <0.05). According to the results, the highest mortality and residual Butachlor in the liver tissue were related to the T2>T3>T1> C groups on days 15 and 30 after exposure (p <0.05) respectively. According to the results of this study, Butachlor herbicide can accumulate in liver tissues of zebrafish even when it is used in low concentrations. Also the behavioral and clinical features following Butachlor use included restlessness, rapid respiration, air swallowing at the surface of the water, loss of balance, and disoriented swimming was observed. Regarding the importance of fish as the protein source in humans’ food, this phenomenon can be a potential threat to human health. Therefore, it is necessary to reduce the application of this toxin and replace it with alternative compounds.
Keywords: Butachlor, Herbicide, Zebrafish, Bioaccumulation
Full-Text [PDF 631 kb]   (617 Downloads)    
Type of Study: Original research papers | Subject: Toxicology and polution
Received: 2021/08/20 | Accepted: 2021/10/30 | Published: 2021/11/11
References
1. Abigail, M., Samuel, S. M. and Ramalingam, C., 2015. Addressing the environmental impacts of Butachlor and the available remediation strategies: a systematic review. International journal of environmental science and technology, 12(12), 4025-4036. [DOI:10.1007/s13762-015-0866-2]
2. Altinok, I., Capkin, E. and Boran, H., 2012. Mutagenic, genotoxic and enzyme inhibitory effects of carbosulfan in rainbow trout Oncorhynchus mykiss. Pesticide biochemistry and physiology, 102(1), 61-67. [DOI:10.1016/j.pestbp.2011.10.011]
3. Ateeq, B., Ali, M. N. and Ahmad, W., 2002. Induction of micronuclei and erythrocyte alterations in the catfish Clarias batrachus by 2, 4-dichlorophenoxyacetic acid and butachlor. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 518(2), 135-144. [DOI:10.1016/S1383-5718(02)00075-X]
4. Ateeq, B., Farah, M. A. and Ahmad, W., 2006. Evidence of apoptotic effects of 2, 4-D and butachlor on walking catfish, Clarias batrachus, by transmission electron microscopy and DNA degradation studies. Life Sciences, 78(9), 977-986. [DOI:10.1016/j.lfs.2005.06.008] [PMID]
5. Barnhoorn, I. and van Dyk, C., 2020. The first report of selected herbicides and fungicides in water and fish from a highly utilized and polluted freshwater urban impoundment. Environmental Science and Pollution Research, 27(26), 33393-33398. [DOI:10.1007/s11356-020-09930-7] [PMID]
6. Bhaskara Tataji, P. and Vijaya Kumar, M., 2016. Biochemical changes induced by Butachlor and Machete 50% EC to the freshwater fish Channa punctata (Bloch). International Journal of Science and Research, 5(3), 2048-2052. [DOI:10.21275/v5i3.NOV162415]
7. Chang, J., Liu, S., Zhou, S., Wang, M. and Zhu, G., 2013. Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio). Experimental and toxicologic pathology, 65(1-2), 205-209. [DOI:10.1016/j.etp.2011.08.007] [PMID]
8. Clasen, B., Loro, V. L., Murussi, C. R., Tiecher, T. L., Moraes, B. and Zanella, R., 2018. Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Science of the Total Environment, 626, 737-743. [DOI:10.1016/j.scitotenv.2018.01.154] [PMID]
9. Federation, W. E. and Association, A., 2005. Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA.
10. Feitsma, H. and Cuppen, E., 2008. Zebrafish as a cancer model. Molecular Cancer Research, 6(5), 685-694. [DOI:10.1158/1541-7786.MCR-07-2167] [PMID]
11. Finney, D.J., 1971. Probit analysis (N o. 04; QA276. 8, F6 1971.).
12. Geng, B., Lin, L., Zhang, Q. and Zhong, B., 2010. Genotoxicity of the pesticide dichlorvos and herbicide butachlor on Rana zhenhaiensis tadpoles. Asian Herpatology Research, 2(1), 118-122.
13. Geng, B., Yao, D., Huang, H., Xue, Q., Lian, Y. and Zheng, Z., 2005. Acute toxicities and effects of dichlorovos and butachlor to Rana japonica tadpoles and its growth. Herpetol Sinica, 10, 127-132.
14. Ghaffar, A., Hussain, R., Khan, A., Abbas, R. Z. and Asad, M., 2015. Butachlor Induced Clinico-Hematological and Cellular Changes in Fresh Water Fish Labeo rohita (Rohu). Pakistan veterinary journal, 35(2).
15. Graney Jr, R. L., Cherry, D. S. and Cairns Jr, J., 1984. The influence of substrate, pH, diet and temperature upon cadmium accumulation in the Asiatic clam (Corbicula fluminea) in laboratory artificial streams. Water research, 18(7), 833-842. [DOI:10.1016/0043-1354(84)90267-7]
16. Guo, H., Yin, L., Zhang, S. and Feng, W., 2010. The toxic mechanism of high lethality of herbicide butachlor in marine flatfish flounder, Paralichthys olivaceus. Journal of ocean university of China, 9(3), 257-264. [DOI:10.1007/s11802-010-1693-1]
17. Gupta, P., Khangarot, B. and Durve, V., 1981. The temperature dependence of the acute toxicity of copper to a freshwater pond snail, Viviparus bengalensis L. Hydrobiologia, 83(3), 461-464. [DOI:10.1007/BF02187041]
18. Hedayati, A. and Gerami, M. H., 2014. Acute toxicity of butachlor to caspian kutum (Rutilus frisii Kutum Kamensky, 1991). Journal of Environmental Treatment Techniques, 2(4), 155-157.
19. Hill, A. J., Teraoka, H., Heideman, W. and Peterson, R. E., 2005. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological sciences, 86(1), 6-19. [DOI:10.1093/toxsci/kfi110] [PMID]
20. Huang, Y., Ma, J., Meng, Y., Wei, Y., Xie, S., Jiang, P., Wang, Z., Chen, X., Liu, Z. and Zhong, K., 2020. Exposure to Oxadiazon-Butachlor causes cardiac toxicity in zebrafish embryos. Environmental Pollution, 265, 114775. [DOI:10.1016/j.envpol.2020.114775] [PMID]
21. Jin, Y., Zhang, X., Shu, L., Chen, L., Sun, L., Qian, H., Liu, W. and Fu, Z., 2010. Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere, 78(7), 846-852. [DOI:10.1016/j.chemosphere.2009.11.044] [PMID]
22. Kazempoor, R., Alaei, E. and Alavinezhad, S. S., 2021. Measurement of total petroleum hydrocarbons (TPH) in yellowfin seabream fish (Acanthopagrus latus
23. Houttuyn, 1782) tissues following experimental crude oil poisoning. Fisheries Science and Technology, 10(2), 240-250.
24. Mamun, M. I. R., Park, J. H., Choi, J. H., Kim, H. K., Choi, W. J., Han, S. S., Hwang, K., Jang, N. I., Assayed, M. E. and El‐Dib, M. A., 2009. Development and validation of a multiresidue method for determination of 82 pesticides in water using GC. Journal of separation science, 32(4), 559-574. [DOI:10.1002/jssc.200800606] [PMID]
25. Naveed, A., Janaiah, C. and Adilabad, A., 2011. Effect of triazophos on protein metabolism in the fish, channa punctatus (Bloch). Current Research Journal of Biological Sciences, 3(2), 124-128.
26. Nwani, C. D., Ama, U. I., Okoh, F., Oji, U. O., Ogbonyealu, R. C., Ibiam, A. A. and Udu-Ibiam, O., 2013. Acute toxicity of the chloroacetanilide herbicide butachlor and its effects on the behavior of the freshwater fish Tilapia zillii. African journal of biotechnology, 12(5). [DOI:10.5897/AJB12.2433]
27. Nwani, C., Lakra, W., Nagpure, N., Kumar, R., Kushwaha, B. and Srivastava, S., 2010. Mutagenic and genotoxic effects of carbosulfan in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food and Chemical Toxicology, 48(1), 202-208. [DOI:10.1016/j.fct.2009.09.041] [PMID]
28. Palaniappan, P. R. and Karthikeyan, S., 2009. Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel. Journal of Environmental Sciences, 21(2), 229-236. [DOI:10.1016/S1001-0742(08)62256-1]
29. Peebua, P., Kosiyachinda, P., Pokethitiyook, P. and Kruatrachue, M., 2007. Evaluation of alachlor herbicide impacts on Nile tilapia (Oreochromis niloticus) using biochemical biomarkers. Bulletin of environmental contamination and toxicology, 78(2), 138-141. [DOI:10.1007/s00128-007-9027-8] [PMID]
30. Pérez-Parada, A., Goyenola, G., de Mello, F. T. and Heinzen, H., 2018. Recent advances and open questions around pesticide dynamics and effects on freshwater fishes. Current Opinion in Environmental Science & Health, 4, 38-44. [DOI:10.1016/j.coesh.2018.08.004]
31. Reindl, A. R., Falkowska, L. and Grajewska, A., 2015. Chlorinated herbicides in fish, birds and mammals in the Baltic Sea. Water, Air, & Soil Pollution, 226(8), 1-8. [DOI:10.1007/s11270-015-2536-x] [PMID] [PMCID]
32. Rossi, A. S., Fantón, N., Michlig, M. P., Repetti, M. R. and Cazenave, J., 2020. Fish inhabiting rice fields: Bioaccumulation, oxidative stress and neurotoxic effects after pesticides application. Ecological Indicators, 113, 106186. [DOI:10.1016/j.ecolind.2020.106186]
33. Santos, L. H., Araújo, A. N., Fachini, A., Pena, A., Delerue-Matos, C. and Montenegro, M., 2010. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of hazardous materials, 175(1-3), 45-95. [DOI:10.1016/j.jhazmat.2009.10.100] [PMID]
34. Shi, R., Lv, J. and Feng, J., 2011. Assessment of pesticide pollution in suburban soil in south Shenyang, China. Bulletin of environmental contamination and toxicology, 87(5), 567-573. [DOI:10.1007/s00128-011-0401-1] [PMID]
35. Sipes, N. S., Padilla, S. and Knudsen, T. B., 2011. Zebrafish-As an integrative model for twenty‐first century toxicity testing. Birth Defects Research Part C: Embryo Today: Reviews, 93(3), 256-267. [DOI:10.1002/bdrc.20214] [PMID]
36. Teng, M., Zhang, H., Fu, Q., Lu, X., Chen, J. and Wei, F., 2013. Irrigation-induced pollution of organochlorine pesticides and polychlorinated biphenyls in paddy field ecosystem of Liaohe River Plain, China. Chinese Science Bulletin, 58(15), 1751-1759. [DOI:10.1007/s11434-013-5815-1]
37. Tilak, K., Veeraiah, K., Thathaji, P. B. and Butchiram, M., 2007. Toxicity studies of butachlor to the freshwater fish Channa punctata (Bloch). Journal of Environmental Biology, 28(2), 485.
38. Vajargah, M. F. and Hedayati, A., 2017. Acute toxicity of butachlor to Rutilus rutilus caspicus and Sander lucioperca in vivo condition. Transylvanian Review of Systematical and Ecological Research, 19(3), 85. [DOI:10.1515/trser-2017-0023]
39. Van Toan, P., Sebesvari, Z., Bläsing, M., Rosendahl, I. and Renaud, F. G., 2013. Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam. Science of the Total Environment, 452, 28-39. [DOI:10.1016/j.scitotenv.2013.02.026] [PMID]
40. Zhang, H., Lu, X., Zhang, Y., Ma, X., Wang, S., Ni, Y. and Chen, J., 2016. Bioaccumulation of organochlorine pesticides and polychlorinated biphenyls by loaches living in rice paddy fields of Northeast China. Environmental Pollution, 216, 893-901. [DOI:10.1016/j.envpol.2016.06.064] [PMID]



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arayesh P, Motahari S, Kazempoor R, Farahani M. Research Article: Bioaccumulation of different concentrations of Butachlor in the Zebrafish (Danio rerio). Sustainable Aquaculture. Health. Management. J. 2021; 7 (2) :7-18
URL: http://ijaah.ir/article-1-246-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 2 (2021) Back to browse issues page
Persian site map - English site map - Created in 0.06 seconds with 44 queries by YEKTAWEB 4645