[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
Abstract in

Published articles: 117
Acceptance rate: 76.4
Rejection rate: 23.6
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Time for review and publishing
Articles first review mean= 20 days
Articles acceptance mean= 64 days
Articles publishing mean= 3 days
cross Ref


:: Volume 8, Issue 1 (2022) ::
Sustainable Aquaculture. Health. Management. J. 2022, 8(1): 78-102 Back to browse issues page
Review Article: A review of the antimicrobial and toxic properties of nanoparticles as a new alternative in the control of aquatic diseases
O Sabzevari , A Khajerahimi , R Kazempoor * , B Nowruzi
Abstract:   (1024 Views)
Nowadays, the Aquaculture industry has played a major role in dealing with a broad range requirements for human protein needs. Though environmental pollution and the incidence of the disease have always been the significant challenges in the use of aquatic products. Increasing the antibiotic resistance rate in fish pathogens has attracted attention to searching for alternatives to antibiotics. In this regard, nanotechnology as a new and innovative strategy has a range of applications in aquaculture and preserving sea animals and can provide a reliable way to protect farmed fish from pathogens. The producers, therefore, try to eliminate barriers in food fields using nano-based tools and cause growth, proliferation, aquaculture, and water purification to increase production in the aquaculture industry. One of the most outstanding issues that researchers point out nano-scale is finding appropriate methodologies for the synthesis of environment-friendly and non-toxic nanoparticles. The specific chemical, physical and biological properties of nanoparticles have increased the incentive to produce them. Today these agents have found their way into many medical applications, including detection, vaccinations, medicine, and gene transfer. Moreover, the use of nanoparticle-based vaccines for many viral pathogens is a developing field in fish disease research. So, Nanoparticles have been widely taken into consideration as a special and sensitive tool to identify bacterial, fungal and viral diseases in aquaculture. This study focuses on the antimicrobial effects of nanoparticles, especially antibiotic-resistant bacteria, and the nanotechnology applications in fisheries.
Keywords: Nanoparticles, Antimicrobial properties, Toxicity, Aquatic animal diseases, Nanotechnology
Full-Text [PDF 707 kb]   (393 Downloads)    
Type of Study: Review papers | Subject: Aquaculture and Health management
Received: 2022/04/14 | Accepted: 2022/08/19 | Published: 2022/08/25
1. Abdel-Tawwab, M., Razek, N. A. and Abdel-Rahman, A. M., 2019. Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish & shellfish immunology, 88, 254-258. [DOI:10.1016/j.fsi.2019.02.063] [PMID]
2. Ahmed, S., Ahmad, M., Swami, B. L. and Ikram, S., 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of advanced research, 7, 17-28. [DOI:10.1016/j.jare.2015.02.007] [PMID] [PMCID]
3. Ali, M., Nelson, A. R., Lopez, A. L. and Sack, D. A., 2015. Updated global burden of cholera in endemic countries. PLoS neglected tropical diseases, 9, e0003832. [DOI:10.1371/journal.pntd.0003832] [PMID] [PMCID]
4. Ansar, S., Alshehri, S. M., Abudawood, M., Hamed, S. S. and Ahamad, T., 2017. Antioxidant and hepatoprotective role of selenium against silver nanoparticles. International journal of nanomedicine, 12, 7789. [DOI:10.2147/IJN.S136748] [PMID] [PMCID]
5. AYDIN, F. and Şehriban, Ç.-Y., 2019. Effect of probiotics on reproductive performance of fish. Natural and Engineering Sciences, 4, 153-162. [DOI:10.28978/nesciences.567113]
6. Banasiuk, R., Frackowiak, J. E., Krychowiak, M., Matuszewska, M., Kawiak, A., Ziabka, M., Lendzion-Bielun, Z., Narajczyk, M. and Krolicka, A., 2016. Synthesis of antimicrobial silver nanoparticles through a photomediated reaction in an aqueous environment. International journal of nanomedicine, 11, 315. [DOI:10.2147/IJN.S93611] [PMID] [PMCID]
7. Dadar, M., Dhama, K., Vakharia, V. N., Hoseinifar, S. H., Karthik, K., Tiwari, R., Khandia, R., Munjal, A., Salgado-Miranda, C. and Joshi, S. K., 2017. Advances in aquaculture vaccines against fish pathogens: global status and current trends. Reviews in Fisheries Science & Aquaculture, 25, 184-217. [DOI:10.1080/23308249.2016.1261277]
8. Dananjaya, S., Godahewa, G., Jayasooriya, R., Lee, J. and De Zoysa, M., 2016. Antimicrobial effects of chitosan silver nano composites (CAgNCs) on fish pathogenic Aliivibrio (Vibrio) salmonicida. Aquaculture, 450, 422-430. [DOI:10.1016/j.aquaculture.2015.08.023]
9. Dar, A. H., Rashid, N., Majid, I., Hussain, S. and Dar, M. A., 2020. Nanotechnology interventions in aquaculture and seafood preservation. Critical Reviews in Food Science and Nutrition, 60, 1912-1921. [DOI:10.1080/10408398.2019.1617232] [PMID]
10. Devi, G. K., Suruthi, P., Veerakumar, R., Vinoth, S., Subbaiya, R. and Chozhavendhan, S., 2019. A review on metallic gold and silver nanoparticles. Research Journal of Pharmacy and Technology, 12, 935-943. [DOI:10.5958/0974-360X.2019.00158.6]
11. Embregts, C. W. and Forlenza, M., 2016. Oral vaccination of fish: Lessons from humans and veterinary species. Developmental & Comparative Immunology, 64, 118-137. [DOI:10.1016/j.dci.2016.03.024] [PMID]
12. Eugenio, M., Müller, N., Frases, S., Almeida-Paes, R., Lima, L. M. T., Lemgruber, L., Farina, M., de Souza, W. and Sant'Anna, C., 2016. Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. Rsc Advances 6, 9893-9904. [DOI:10.1039/C5RA22727E]
13. Fang, P., Li, X., Dai, J., Cole, L., Camacho, J. A., Zhang, Y., Ji, Y., Wang, J., Yang, X.-F. and Wang, H., 2018. Immune cell subset differentiation and tissue inflammation. Journal of hematology & oncology, 11, 1-22. [DOI:10.1186/s13045-018-0637-x] [PMID] [PMCID]
14. Francis, S., Joseph, S., Koshy, E. P. and Mathew, B., 2018. Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artificial cells, nanomedicine, and biotechnology, 46, 795-804. [DOI:10.1080/21691401.2017.1345921] [PMID]
15. Gahlawat, G., Shikha, S., Chaddha, B. S., Chaudhuri, S. R., Mayilraj, S. and Choudhury, A. R., 2016. Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microbial Cell Factories, 15, 1-14. [DOI:10.1186/s12934-016-0422-x] [PMID] [PMCID]
16. Gheibi Hayat, S. M. and Darroudi, M., 2019. Nanovaccine: A novel approach in immunization. Journal of cellular physiology, 234, 12530-12536. [DOI:10.1002/jcp.28120] [PMID]
17. Handoko, C. T., Huda, A. and Gulo, F., 2019. Synthesis pathway and powerful antimicrobial properties of silver nanoparticle: a critical review. Asian Journal of Scientific Research, 12, 1-17. [DOI:10.3923/ajsr.2019.1.17]
18. Hosseini, S. F., Rezaei, M., Zandi, M. and Farahmandghavi, F., 2016. Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food chemistry, 194, 1266-1274. [DOI:10.1016/j.foodchem.2015.09.004] [PMID]
19. Idowu, T., Adedeji, H. and Sogbesan, O., 2017. Fish disease and health management in aquaculture production. International Journal Environmental & Agricultural Science, 1, 2.
20. Jafari Porzani, S., Konur, O. and Nowruzi, B., 2021. Cyanobacterial natural products as sources for antiviral drug discovery against COVID-19. Journal of Biomolecular Structure and Dynamics, 1-17. [DOI:10.1080/07391102.2021.1899050] [PMID]
21. Kalaiselvi, D., Mohankumar, A., Shanmugam, G., Nivitha, S. and Sundararaj, P., 2019. Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: a novel approach for the management of root knot nematode, Meloidogyne incognita. Crop Protection 117, 108-114. [DOI:10.1016/j.cropro.2018.11.020]
22. Kasithevar, M., Saravanan, M., Prakash, P., Kumar, H., Ovais, M., Barabadi, H., Shinwari, Z. K., 2017. Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. Journal of Interdisciplinary Nanomedicine, 2, 131-141. [DOI:10.1002/jin2.26]
23. Khan, Z. U. H., Sadiq, H. M., Shah, N. S., Khan, A. U., Muhammad, N., Hassan, S. U., Tahir, K., Khan, F. U., Imran, M. and Ahmad, N., 2019. Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. Journal of Photochemistry and Photobiology B: Biology, 192, 147-157. [DOI:10.1016/j.jphotobiol.2019.01.013] [PMID]
24. Khosravi-Katuli, K., Prato, E., Lofrano, G., Guida, M., Vale, G. and Libralato, G., 2017. Effects of nanoparticles in species of aquaculture interest. Environmental Science and Pollution Research, 24, 17326-17346. [DOI:10.1007/s11356-017-9360-3] [PMID]
25. Kwasek, K., Thorne-Lyman, A. L. and Phillips, M., 2020. Can human nutrition be improved through better fish feeding practices? a review paper. Critical Reviews in Food Science and Nutrition, 60, 3822-3835. [DOI:10.1080/10408398.2019.1708698] [PMID]
26. Latif, U., Al-Rubeaan, K. and Saeb, A. T., 2015. A review on antimicrobial chitosan-silver nanocomposites: a roadmap toward pathogen targeted synthesis. International Journal of Polymeric Materials and Polymeric Biomaterials, 64, 448-458. [DOI:10.1080/00914037.2014.958834]
27. Luis, A. I. S., Campos, E. V. R., de Oliveira, J. L. and Fraceto, L. F., 2019. Trends in aquaculture sciences: from now to use of nanotechnology for disease control. Reviews in Aquaculture, 11, 119-132. [DOI:10.1111/raq.12229]
28. Manosalva, N., Tortella, G., Cristina Diez, M., Schalchli, H., Seabra, A. B., Durán, N. and Rubilar, O., 2019. Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity. World Journal of Microbiology and Biotechnology, 35, 1-9. [DOI:10.1007/s11274-019-2664-3] [PMID]
29. Mohanty, B., 2015. NUTRITIONAL VALUE OF FOOD FISH. pp. 15-21.
30. Mohd-Aris, A., Muhamad-Sofie, M. H. N., Zamri-Saad, M., Daud, H. M. and Ina-Salwany, M. Y., 2019. Live vaccines against bacterial fish diseases: A review. Veterinary world, 12, 1806. [DOI:10.14202/vetworld.2019.1806-1815] [PMID] [PMCID]
31. Mudhafar, M., Zainol, I., Jaafar, C. N. A., Alsailawi, H. and Majhool, A. A., 2020. Microwave-Assisted Green Synthesis of Ag Nanoparticles using Leaves of Melia Dubia (Neem) and its Antibacterial Activities. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 65, 121-129.
32. Nasr-Eldahan, S., Nabil-Adam, A., Shreadah, M. A., Maher, A. M. and El-Sayed Ali, T., 2021. A review article on nanotechnology in aquaculture sustainability as a novel tool in fish disease control. Aquaculture International, 29, 1459-1480. [DOI:10.1007/s10499-021-00677-7] [PMID] [PMCID]
33. Nayak, D., Ashe, S., Rauta, P. R., Kumari, M. and Nayak, B., 2016. Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering: C, 58, 44-52. [DOI:10.1016/j.msec.2015.08.022] [PMID]
34. Nowruzi, B., Blanco, S. and Nejadsattari, T., 2018a. Chemical and molecular evidences for the poisoning of a duck by anatoxin-a, nodularin and cryptophycin at the coast of lake Shoormast (Mazandaran province, Iran). International Journal on Algae, 20. [DOI:10.1615/InterJAlgae.v20.i4.30]
35. Nowruzi, B., Fahimi, H. and Lorenzi, A. S., 2020a. Recovery of pure C-phycoerythrin from a limestone drought tolerant cyanobacterium Nostoc sp. and evaluation of its biological activity. Anales de Biología. Servicio de Publicaciones de la Universidad de Murcia, pp. 115-128. [DOI:10.6018/analesbio.42.13]
36. Nowruzi, B., Haghighat, S., Fahimi, H. and Mohammadi, E., 2018b. Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research 9, 5-12. [DOI:10.1111/jphs.12202]
37. Nowruzi, B., Khavari-Nejad, R.-A., Sivonen, K., Kazemi, B., Najafi, F.and Nejadsattari, T., 2012. Identification and toxigenic potential of a Nostoc sp. Algae, 27, 303-313. [DOI:10.4490/algae.2012.27.4.303]
38. Nowruzi, B., Khavari-Nejad, R. A., Sivonen, K., Kazemi, B., Najafi, F. and Nejadsattari, T., 2013. Identification and toxigenic potential of a cyanobacterial strain (Stigomena sp.). Progress in Biological Sciences 3, 79-85.
39. Nowruzi, B. and Lorenzi, A. S., 2021a. Characterization of a potentially microcystin-producing Fischerella sp. isolated from Ajigol wetland of Iran. South African Journal of Botany 137, 423-433. [DOI:10.1016/j.sajb.2020.11.013]
40. Nowruzi, B. and Lorenzi, A. S., 2021b. Production of the neurotoxin homoanatoxin-a and detection of a biosynthetic gene cluster sequence (anaC) from an Iranian isolate of Anabaena. South African Journal of Botany, 139, 300-305. [DOI:10.1016/j.sajb.2021.02.012]
41. Nowruzi, B. and Porzani, S. J., 2021. Toxic compounds produced by cyanobacteria belonging to several species of the order Nostocales: A review. Journal of Applied Toxicology, 41, 510-548. [DOI:10.1002/jat.4088] [PMID]
42. Nowruzi, B., Sarvari, G. and Blanco, S., 2020b. Applications of cyanobacteria in biomedicine. Handbook of Algal Science, Technology and Medicine, pp. 441-453. [DOI:10.1016/B978-0-12-818305-2.00028-0]
43. Park, C. M., Chu, K. H., Heo, J., Her, N., Jang, M., Son, A. and Yoon, Y., 2016a. Environmental behavior of engineered nanomaterials in porous media: a review. Journal of hazardous materials 309, 133-150. [DOI:10.1016/j.jhazmat.2016.02.006] [PMID]
44. Park, S., Cha, S.-H., Cho, I., Park, S., Park, Y., Cho, S. and Park, Y., 2016b. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Materials Science and Engineering: C, 58, 1160-1169. [DOI:10.1016/j.msec.2015.09.068] [PMID]
45. Porzani, S. J., Lima, S. T., Metcalf, J. S. and Nowruzi, B., 2021. In Vivo and In Vitro Toxicity Testing of Cyanobacterial Toxins: A Mini-Review. Reviews of Environmental Contamination and Toxicology Volume, 258, 109-150. [DOI:10.1007/398_2021_74] [PMID]
46. Rafique, M., Sadaf, I., Rafique, M. S. and Tahir, M. B., 2017. A review on green synthesis of silver nanoparticles and their applications. Artificial cells, nanomedicine, and biotechnology, 45, 1272-1291. [DOI:10.1080/21691401.2016.1241792] [PMID]
47. Rajabpour, N., Nowruzi, B. and Ghobeh, M., 2019. Investigation of the toxicity, antioxidant and antimicrobial activities of some cyanobacterial strains isolated from different habitats. Acta Biologica Slovenica, 62, 3-14.
48. Rodrigues, S. M., Demokritou, P., Dokoozlian, N., Hendren, C. O., Karn, B., Mauter, M. S., Sadik, O. A., Safarpour, M., Unrine, J. M. and Viers, J., 2017. Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environmental Science: Nano, 4, 767-781. [DOI:10.1039/C6EN00573J]
49. Safavi, M., Nowruzi, B., Estalaki, S., Shokri, M., 2019. Biological activity of methanol extract from Nostoc sp. N42 and Fischerella sp. S29 isolated from aquatic and terrestrial ecosystems. International Journal on Algae, 21. [DOI:10.1615/InterJAlgae.v21.i4.80]
50. Shaalan, M., Saleh, M., El-Mahdy, M. and El-Matbouli, M., 2016. Recent progress in applications of nanoparticles in fish medicine: a review. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 701-710. [DOI:10.1016/j.nano.2015.11.005] [PMID]
51. Shah, B. R. and Mraz, J., 2020. Advances in nanotechnology for sustainable aquaculture and fisheries. Reviews in Aquaculture, 12, 925-942. [DOI:10.1111/raq.12356]
52. Siddiqi, K. S., Husen, A. and Rao, R. A., 2018. A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology, 16, 1-28. [DOI:10.1186/s12951-018-0334-5] [PMID] [PMCID]
53. Singh, H., Du, J. and Yi, T.-H., 2017. Biosynthesis of silver nanoparticles using Aeromonas sp. THG-FG1. 2 and its antibacterial activity against pathogenic microbes. Artificial Cells, Nanomedicine, and Biotechnology, 45, 584-590. [DOI:10.3109/21691401.2016.1163715] [PMID]
54. Vijayan, R., Joseph, S. and Mathew, B., 2018. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artificial cells, nanomedicine, and biotechnology 46, 861-871. [DOI:10.1080/21691401.2017.1345930] [PMID]
55. Vimbela, G. V., Ngo, S. M., Fraze, C., Yang, L. and Stout, D. A., 2017. Antibacterial properties and toxicity from metallic nanomaterials. International journal of nanomedicine, 12, 3941. [DOI:10.2147/IJN.S134526] [PMID] [PMCID]
56. Yadollahi, M., Farhoudian, S. and Namazi, H., 2015. One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. International journal of biological macromolecules, 79, 37-43. [DOI:10.1016/j.ijbiomac.2015.04.032] [PMID]

XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabzevari O, Khajerahimi A, Kazempoor R, Nowruzi B. Review Article: A review of the antimicrobial and toxic properties of nanoparticles as a new alternative in the control of aquatic diseases. Sustainable Aquaculture. Health. Management. J. 2022; 8 (1) :78-102
URL: http://ijaah.ir/article-1-258-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 1 (2022) Back to browse issues page
Persian site map - English site map - Created in 0.05 seconds with 44 queries by YEKTAWEB 4645