[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Abstract in
AWT IMAGE

 
..
Published articles: 117
Acceptance rate: 76.4
Rejection rate: 23.6
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Time for review and publishing
Articles first review mean= 20 days
Articles acceptance mean= 64 days
Articles publishing mean= 3 days
 
..
DOI
   
   
 
..
cross Ref

AWT IMAGE

..
:: Volume 6, Issue 2 (2020) ::
Sustainable Aquaculture. Health. Management. J. 2020, 6(2): 60-70 Back to browse issues page
Research Article: The effect of different concentrations of Lacticaseibacillus casei on the growth performance and intestinal morphology of zebrafish (Danio rerio)
S. S Alavinezhad , R Kazempoor * , S Kakoolaki , S. A. A Anvar
Abstract:   (2033 Views)
Considering the increasing rate of antibiotic resistance and consequently the need for using alternative compounds to increase immunity and prevent diseases, the present study aimed to investigate the effects of Lacticaseibacillus casei on the growth indices and intestinal morphology of adult zebrafish. This study was conducted on 80 zebrafish (mean weight: 0.25±0.05 g and mean length: 2.5±0.05 cm), which were assigned to four groups with two replications. Three of the groups received L. casei at each of the concentrations of 1.5×104, 1.5×107, 1.5×108 CFU/ml, and one served as the control, which was fed with the basic diet. Samples were collected to examine the weight (W), length (TL), condition factor (CF), and intestinal morphological changes of the fish at the end of the study. The results showed that the probiotic diet boosted the weight and length of the fish compared to the control group (p>0.05). Based on these results, feeding with L. casei probiotic exerted the most potent and least impact on the growth of the fish at the concentrations of 1.5×108 CFU/ml and 1.5×107 CFU/ml, respectively. There was also a significant change in intestinal villous length after receiving the probiotic diet compared with the control group (p<0.05). However, intestinal villous length was not significantly different comparing the groups receiving different concentrations of the probiotic (p>0.05). Based on the results of this study and observed increased length of intestinal villous after being fed with L. casei, which will subsequently increase the nutrient absorption and growth of fish, it is recommended to use this probiotic at the indicated concentrations (1.5×108 CFU/ml) as a dietary supplement.
Keywords: Lacticaseibacillus casei, Growth performance, Intestinal morphology, Danio rerio
Full-Text [PDF 810 kb]   (780 Downloads)    
Type of Study: Original research papers | Subject: Aquaculture and Health management
Received: 2020/09/20 | Accepted: 2020/11/12 | Published: 2020/11/17
References
1. Aryana, K.J. and Olson, D.W., 2017. A 100-Year Review: Yogurt and other cultured dairy products. Journal of Dairy Science, 100(12), 9987-10013. [DOI:10.3168/jds.2017-12981] [PMID]
2. Avella, M.A., Place, A., Du, S.j., Williams, E., Silvi, S., Zohar, Y., Carnevali, O., 2012. Lactobacillus rhamnosus accelerates Zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems. PLoS One. 7(9), e45572. [DOI:10.1371/journal.pone.0045572] [PMID] [PMCID]
3. Balcázar, J.L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D. and Múzquiz, J.L., 2006. The role of probiotics in aquaculture. Veterinary microbiology, 114(3-4), 173-186. [DOI:10.1016/j.vetmic.2006.01.009] [PMID]
4. Barbour, E.A. and Priest, F.G., 1986. The preservation of lactobacilli: a comparison of three methods. Letters in Applied Microbiology, 2(4), 69-71. [DOI:10.1111/j.1472-765X.1986.tb01518.x]
5. Bhavani, A.L. and Sundar, S.K., 2014. Optimization of various parameters for enhancement of dextransucrase production by Lactic acid bacteria of the cocci group. International Journal of Current Microbiology and Applied Sciences, 3, 849-857.
6. Carnevali, O., Maradonna, F. and Gioacchini, G., 2017. Integrated control of fish metabolism, wellbeing and reproduction: the role of probiotic. Aquaculture, 472, 144-155. [DOI:10.1016/j.aquaculture.2016.03.037]
7. Dawood, M.A., Koshio, S., Ishikawa, M., Yokoyama, S., El Basuini, M.F., Hossain, M.S., Nhu, T.H., Dossou, S. and Moss, A.S., 2016. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish & Shellfish Immunology, 49, 275-285. [DOI:10.1016/j.fsi.2015.12.047] [PMID]
8. EFSA Panel on Biological Hazards (BIOHAZ), 2017. Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 5: suitability of taxonomic units notified to EFSA until September 2016. EFSA Journal, 15(3), e04663. [DOI:10.2903/j.efsa.2017.4663] [PMID]
9. Falcinelli, S., Picchietti, S., Rodiles, A., Cossignani, L., Merrifield, D.L., Taddei, A.R., Maradonna, F., Olivotto, I., Gioacchini, G. and Carnevali, O., 2015. Lactobacillus rhamnosus lowers Zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism. Scientific reports, 5(1), 1-11. [DOI:10.1038/srep09336] [PMID] [PMCID]
10. González-Félix, M.L., Gatlin III, D.M., Urquidez-Bejarano, P., de la Reé-Rodríguez, C., Duarte-Rodríguez, L., Sánchez, F., Casas-Reyes, A., Yamamoto, F.Y., Ochoa-Leyva, A. and Perez-Velazquez, M., 2018. Effects of commercial dietary prebiotic and probiotic supplements on growth, innate immune responses, and intestinal microbiota and histology of Totoaba macdonaldi. Aquaculture, 491, 239-251. [DOI:10.1016/j.aquaculture.2018.03.031]
11. Jang, W.J., Lee, J.M., Hasan, M.T., Lee, B.J., Lim, S.G. and Kong, I.S., 2019. Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity, digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus). Fish & shellfish immunology, 92, 719-727. [DOI:10.1016/j.fsi.2019.06.056] [PMID]
12. Keller, J.M. and Keller, E.T., 2018. The use of mature Zebrafish (Danio rerio) as a model for human aging and disease. Conn's handbook of models for human aging, 351-359. [DOI:10.1016/B978-0-12-811353-0.00026-9] [PMID] [PMCID]
13. Kuebutornye, F.K., Lu, Y., Abarike, E.D., Wang, Z., Li, Y. and Sakyi, M.E., 2020. In vitro assessment of the probiotic characteristics of three bacillus species from the gut of nile tilapia, oreochromis niloticus. Probiotics and antimicrobial proteins, 12(2), 412-424. [DOI:10.1007/s12602-019-09562-5] [PMID]
14. Lazado, C.C., Caipang, C.M.A., Brinchmann, M.F. and Kiron, V., 2011. In vitro adherence of two candidate probiotics from Atlantic cod and their interference with the adhesion of two pathogenic bacteria. Veterinary microbiology, 148(2-4), 252-259. [DOI:10.1016/j.vetmic.2010.08.024] [PMID]
15. Lazado, C.C. and Caipang, C.M.A., 2014. Mucosal immunity and probiotics in fish. Fish & shellfish immunology, 39(1), 78-89. [DOI:10.1016/j.fsi.2014.04.015] [PMID]
16. Merrifield, D.L., Harper, G.M., Dimitroglou, A., Ringø, E. and Davies, S.J., 2010. Possible influence of probiotic adhesion to intestinal mucosa on the activity and morphology of rainbow trout (Oncorhynchus mykiss) enterocytes. Aquaculture Research, 41(8), 1268-1272. [DOI:10.1111/j.1365-2109.2009.02397.x]
17. Mirabdollah Elahi, S.S.M., Mirnejad, R., Kazempoor, R. and Sotoodehnejadnematalahi, F., 2020. Study of the Histopathologic Effects of Probiotic Lactobacillus acidophilus in Exposure to E. coli O157: H7 in Zebrafish Intestine. Iranian Red Crescent Medical Journal, 22(4), p.6. [DOI:10.5812/ircmj.99400]
18. Najafabad, M.K., Imanpoor, M.R., Taghizadeh, V. and Alishahi, A., 2016. Effect of dietary chitosan on growth performance, hematological parameters, intestinal histology and stress resistance of Caspian kutum (Rutilus frisii kutum Kamenskii, 1901) fingerlings. Fish physiology and biochemistry, 42(4), 1063-1071. [DOI:10.1007/s10695-016-0197-3] [PMID]
19. Nguyen, T.L., Park, C.I. and Kim, D.H., 2017. Improved growth rate and disease resistance in olive flounder, Paralichthys olivaceus, by probiotic Lactococcus lactis WFLU12 isolated from wild marine fish. Aquaculture, 471, 113-120. [DOI:10.1016/j.aquaculture.2017.01.008]
20. Pelicano, E.R.L., Souza, P.A., Souza, H.B.A., Figueiredo, D.F., Boiago, M.M., Carvalho, S.R. and Bordon, V.F., 2005. Intestinal mucosa development in broiler chickens fed natural growth promoters. Brazilian Journal of Poultry Science, 7, 221-229. [DOI:10.1590/S1516-635X2005000400005]
21. Peredo, A.M., Buentello, A., Gatlin III, D.M. and Hume, M.E., 2015. Evaluation of a dairy‐yeast prebiotic in the diet of juvenile Nile Tilapia, Oreochromis niloticus. Journal of the World Aquaculture Society, 46(1), 92-101. [DOI:10.1111/jwas.12170]
22. Pirarat, N., Pinpimai, K., Endo, M., Katagiri, T., Ponpornpisit, A., Chansue, N. and Maita, M., 2011. Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Research in veterinary science, 91(3), e92-e97. [DOI:10.1016/j.rvsc.2011.02.014] [PMID]
23. Qin, C., Xie, Y., Wang, Y., Li, S., Ran, C., He, S. and Zhou, Z., 2018. Impact of Lactobacillus casei BL23 on the host transcriptome, growth and disease resistance in larval Zebrafish. Frontiers in physiology, 9, 1245. [DOI:10.3389/fphys.2018.01245] [PMID] [PMCID]
24. Reda, R.M. and Selim, K.M., 2015. Evaluation of Bacillus amyloliquefaciens on the growth performance, intestinal morphology, hematology and body composition of Nile tilapia, Oreochromis niloticus. Aquaculture International, 23(1), 203-217. [DOI:10.1007/s10499-014-9809-z]
25. Ringø, E., Løvmo, L., Kristiansen, M., Bakken, Y., Salinas, I., Myklebust, R., Olsen, R.E. and Mayhew, T.M., 2010. Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review. Aquaculture Research, 41(4), 451-467. [DOI:10.1111/j.1365-2109.2009.02339.x]
26. Sáenz de Rodrigáñez, M.A., Díaz‐Rosales, P., Chabrillón, M., Smidt, H., Arijo, S., León‐Rubio, J.M., Alarcón, F.J., Balebona, M.C., Moriñigo, M.A., Cara, J.B. and Moyano, F.J., 2009. Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Senegalese sole (Solea senegalensis, Kaup 1858). Aquaculture Nutrition, 15(2), 177-185. [DOI:10.1111/j.1365-2095.2008.00581.x]
27. Standen, B.T., Peggs, D.L., Rawling, M.D., Foey, A., Davies, S.J., Santos, G.A. and Merrifield, D.L., 2016. Dietary administration of a commercial mixed-species probiotic improves growth performance and modulates the intestinal immunity of tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 49, 427-435. [DOI:10.1016/j.fsi.2015.11.037] [PMID]
28. Suzer, C., Çoban, D., Kamaci, H.O., Saka, Ş., Firat, K., Otgucuoğlu, Ö. and Küçüksari, H., 2008. Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture, 280(1-4), 140-145. [DOI:10.1016/j.aquaculture.2008.04.020]
29. Vand, Z.D.A., Alishahi, M. and Tabande, M.R., 2014. Effects of different levels of Lactobacillus casei as probiotic on growth performance and digestive enzymes activity of Barbus.
30. Wang, Y., Ren, Z., Fu, L. and Su, X., 2016. Two highly adhesive lactic acid bacteria strains are protective in Zebrafish infected with Aeromonas hydrophila by evocation of gut mucosal immunity. Journal of applied microbiology, 120(2), 441-451. [DOI:10.1111/jam.13002] [PMID]
31. Wong, D., von Keyserlingk, M.A., Richards, J.G. and Weary, D.M., 2014. Conditioned place avoidance of Zebrafish (Danio rerio) to three chemicals used for euthanasia and anaesthesia. PLoS One, 9(2), p.e88030. [DOI:10.1371/journal.pone.0088030] [PMID] [PMCID]
32. Xia, Y., Lu, M., Chen, G., Cao, J., Gao, F., Wang, M., Liu, Z., Zhang, D., Zhu, H. and Yi, M., 2018. Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish & shellfish immunology, 76, 368-379. [DOI:10.1016/j.fsi.2018.03.020] [PMID]
33. Xu, C., Yan, S., Guo, Y., Qiao, L., Ma, L., Dou, X. and Zhang, B., 2020. Lactobacillus casei ATCC 393 alleviates Enterotoxigenic Escherichia coli K88-induced intestinal barrier dysfunction via TLRs/mast cells pathway. Life sciences, 244, 117281. [DOI:10.1016/j.lfs.2020.117281] [PMID]
34. Yang, G., Cao, H., Jiang, W., Hu, B., Jian, S., Wen, C., Kajbaf, K., Kumar, V., Tao, Z. and Peng, M., 2019. Dietary supplementation of Bacillus cereus as probiotics in Pengze crucian carp (Carassius auratus var. Pengze): Effects on growth performance, fillet quality, serum biochemical parameters and intestinal histology. Aquaculture Research, 50(8), 2207-2217. [DOI:10.1111/are.14102]
35. Zang, L., Ma, Y., Huang, W., Ling, Y., Sun, L., Wang, X., Zeng, A., Dahlgren, R.A., Wang, C. and Wang, H., 2019. Dietary Lactobacillus plantarum ST-III alleviates the toxic effects of triclosan on Zebrafish (Danio rerio) via gut microbiota modulation. Fish & shellfish immunology, 84, 1157-1169. [DOI:10.1016/j.fsi.2018.11.007] [PMID]



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alavinezhad S S, Kazempoor R, Kakoolaki S, Anvar S A A. Research Article: The effect of different concentrations of Lacticaseibacillus casei on the growth performance and intestinal morphology of zebrafish (Danio rerio). Sustainable Aquaculture. Health. Management. J. 2020; 6 (2) :60-70
URL: http://ijaah.ir/article-1-234-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 2 (2020) Back to browse issues page
Persian site map - English site map - Created in 0.05 seconds with 44 queries by YEKTAWEB 4645