[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Abstract in
AWT IMAGE

 
..
Published articles: 117
Acceptance rate: 76.4
Rejection rate: 23.6
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Time for review and publishing
Articles first review mean= 20 days
Articles acceptance mean= 64 days
Articles publishing mean= 3 days
 
..
DOI
   
   
 
..
cross Ref

AWT IMAGE

..
:: Volume 6, Issue 1 (2020) ::
Sustainable Aquaculture. Health. Management. J. 2020, 6(1): 93-104 Back to browse issues page
Effects of calcium carbonate nanoparticles on water quality, growth and metabolic activity of Macrobrachium nipponense in zero-water exchange biofloc system
R. Fakhari , H. Adineh * , H. Jafaryan , M. Harsij , M. Sudagar
Abstract:   (2628 Views)
The purpose of the present research was to investigate the effects of adding calcium carbonate nanoparticles to the Macrobrachium nipponense diet in the biofloc system under zero exchange conditions. Oriental River prawn (inital weigh of 0.82 ± 0.07 g) were divided into four groups and fed four levels of calcium carbonate nanoparticles as following 0, 25, 50 and 100  mg kg−1 diet in biofloc system (CN0, CN25, CN50, and CN100) for 28 days. This study was applied complete randomized design with three replications. Water quality parameters were measured during the test period. Feed and growth parameters and some metabolic activities of hepatopancreas were measured. Physico-chemical water factors were in the appropriate range for this species. The concentrations of total ammonia nitrogen (TAN), nitrite, and nitrate were not significantly different between the experimental groups. The growth of prawns was significantly higher and feed conversion ratio was lower in CN25 and CN50 groups compared to the control group. The lowest AST and ALT activities were observed in CN25 and CN50 groups compared to the control. The prawns fed with experiment diets had significantly higher total protein, hemocyanin, glucose, and calcium compared to the control. Overall, the results showed diets containing Nano-calcium carbonate at levels 25-50 mg kg-1 in CN25 and CN50 groups could improve growth performance and metabolic activity of oriental river prawn in the biofloc system.
Keywords: Macrobrachium nipponense, nanoparticles, physiology, biofloc technology
Full-Text [PDF 602 kb]   (1317 Downloads)    
Type of Study: Original research papers | Subject: Aquaculture and Health management
Received: 2020/06/6 | Accepted: 2020/08/12 | Published: 2020/08/15
References
1. Adachi. K., Hirata, T., Nagai, K. and Sakaguchi, M., 2001. Hemocyanin a most likely inducer of black spots in kuruma prawn Penaeus japonicus during storage. Journal of Food Science, 66, 1130-1136. [DOI:10.1111/j.1365-2621.2001.tb16093.x]
2. Adineh, H. and Harsij, M., 2019. Effect of different levels of biofloc on water quality, growth performance and survival of Litopenaeus vannamei post larvae. Journal of Veterinary Research, 73(4), 393-401. (In Persian)
3. Adineh, H., Naderi, M., Hamidi, M. K. and Harsij, M., 2019. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish and shellfish immunology, 95, 440-448. [DOI:10.1016/j.fsi.2019.10.057] [PMID]
4. American Public Health Association (APHA). 1998. In: Clescert L, Greenberg A, Eaton A (Eds.), Standard Methods for the Examination of Water and Wastewater. 20th edition. Washington, USA.
5. AOAC. 1995. Official Methods of Analysis of AOAC International. 16th ed., Vol. 1 (Cunnif, P. Ed.), AOAC Int. Arlington ,Virginia, USA.
6. Asaduzzaman, M., Wahab, M. A., Verdegem, M. C. J., Huque, S., Salam, M. A. and Azim, M. E., 2008. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280, 117-123. [DOI:10.1016/j.aquaculture.2008.04.019]
7. Avnimelech, Y., 1999. Carbon and nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, 227-235. [DOI:10.1016/S0044-8486(99)00085-X]
8. Avnimelech, Y., 2009. Biofloc technology. A practical guide book. The World Aquaculture Society, Baton Rouge, 182.
9. Azim, M. E. and Little, D. C., 2008. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4), 29-35. [DOI:10.1016/j.aquaculture.2008.06.036]
10. Ballester, E. L. C., Marzarotto, S. A., Silva de Castro, C., Frozza, A., Pastore, I. and Abreu, P. C., 2017. Productive performance of juvenile freshwater prawns Macrobrachium rosenbergii in biofloc system. Aquaculture Research, 48(9), 4748-4755. [DOI:10.1111/are.13296]
11. Coates, C. J. and Nairn, J., 2014. Diverse immune functions of hemocyanins. Developmental and Comparative Immunology, 45(1), 43-55. [DOI:10.1016/j.dci.2014.01.021] [PMID]
12. Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W., 2012. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356, 351-356. [DOI:10.1016/j.aquaculture.2012.04.046]
13. Craig, S., Helfrich, L.A., 2002. Understanding Fish Nutrition, Feeds and Feeding (Publication 420-256). Virginia Cooperative Extension, Yorktown (Virginia). 4 pp.
14. De Schryver, P., Crab, R., Defoirdt, T., Boon, N. and Verstraete, W., 2008. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, 277, 125-137. [DOI:10.1016/j.aquaculture.2008.02.019]
15. Emerenciano, M., Ballester, E. L., Cavalli, R. O. and Wasielesky, W., 2011. Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: growth performance, floc composition and salinity stress tolerance. Aquaculture International, 19(5), 891-901. [DOI:10.1007/s10499-010-9408-6]
16. FAO, FAO Yearbook. Fishery and Aquaculture Statistics. 2016. Rome, Italy, 2018.
17. Furtado, P. S., Gaona, C. A., Poersch, L. H. and Wasielesky, W., 2014. Application of different doses of calcium hydroxide in the farming shrimp Litopenaeus vannamei with the biofloc technology (BFT). Aquaculture international, 22(3), 1009-1023. [DOI:10.1007/s10499-013-9723-9]
18. Houng, D. T. T., Wang, T., Bayley, M. and Phuong, N. T.,‌ 2010.Osmoregulation, growth and moulting cycles of the giant freshwater prawn (Macrobrachium rosenbergii) at different salinities. Aquaculture Research, 41, 135-143. [DOI:10.1111/j.1365-2109.2010.02486.x]
19. Kaya, D., Genç, M. A., Aktaş, M., Eroldoğan, O. T., Aydın, F. G. and Genç, E., 2019. Effects of Biofloc Technology (BFT) on Growth of Speckled Shrimp (Metapenaeus monoceros). Journal of Agricultural Sciences, 25(4), 491-497. [DOI:10.15832/ankutbd.441745]
20. Khanjani, M. H., Sajjadi, M. M., Alizadeh, M. and Sourinejad, I., 2017. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, 48(4), 1491-1501. [DOI:10.1111/are.12985]
21. Khanjani, M. H., Alizadeh, M. and Sharifinia, M., 2020. Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquaculture Nutrition, 26(2), 328-337. [DOI:10.1111/anu.12994]
22. Khanjani, M.H., Sajjadi, M.M., Alizadeh, M. and Sourinejad, I., 2015. Effect of different feeding levels on water quality, growth performance and survival of western white shrimp (Litopenaeus vannamei Boone, 1931) post larvae with application of biofloc technology. Iranian Scientific Fisheries Journal, 24(2), 13-28. (In Persian)
23. Kumar, S., Anand, P. S. S., De, D., Deo, A. D., Ghoshal, T. K., Sundaray, J. K. and Lalitha, N., 2017. Effects of biofloc under different carbon sources and protein levels on water quality, growth performance and immune responses in black tiger shrimp Penaeus monodon (Fabricius, 1978). Aquaculture Research, 48(3), 1168-1182. [DOI:10.1111/are.12958]
24. Kunst, A., Draeger, B. and Ziegenhorm, J., 1983. UV- methods with hexoquinase and glucose- 6- phosphate dehydrogenase. In: Bergmeyer, H.U. Ed., Methods of Enzymatic Analysis. vol. 6, 3rd ed. Verlag Chemie, Weinheim, pp: 163-185.
25. Li, C. H. and Cheng, S. Y., 2012. Variation of calcium levels in the tissues and hemolymph of Litopenaeus vannamei at various molting stages and salinities. Journal of Crustacean Biology, 32(1), 101-108. [DOI:10.1163/193724011X615370]
26. Lin, Y.C. and Chen, J.C., 2001. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of experimental marine biology and ecology, 259(1), pp.109-119. [DOI:10.1016/S0022-0981(01)00227-1]
27. Luo, G., Liang, W., Tan, H., Yao, C., Zhang, N. and Lu, L., 2013. Effects of calcium and magnesium addition on the start-up of sequencing batch reactor using biofloc technology treating solid aquaculture waste. Aquacultural Engineering, 57, 32-37. [DOI:10.1016/j.aquaeng.2013.06.004]
28. Ma, K., Feng, J., Lin, J. and Li, J., 2011. The complete mitochondrial genome of Macrobrachium nipponense. Gene, 487(2), 160-165. [DOI:10.1016/j.gene.2011.07.017]
29. Martins, G. B., Tarouco, F., Rosa, C. E. and Robaldo, R. B., 2017. The utilization of sodium bicarbonate, calcium carbonate or hydroxide in biofloc system: water quality, growth performance and oxidative stress of Nile tilapia (Oreochromis niloticus). Aquaculture, 468, 10-17. [DOI:10.1016/j.aquaculture.2016.09.046]
30. M'balaka, M., Kassam, D. and Rusuwa, B., 2012. The effect of stocking density on the growth and survival of improved and unimproved strains of Oreochromis shiranus. Egyptian Journal of Aquatic Research, 38, 205-211. [DOI:10.1016/j.ejar.2012.12.013]
31. Mente, E., 2003. Nutrition, Physiology and Metabolism in Crustaceans. Science Publisher, Inc., Enfield, USA, p: 170.
32. Moges, F. D., Patel, P., Parashar, S. K. S. and Das, B. 2020. Mechanistic insights into diverse nano-based strategies for aquaculture enhancement: A holistic review. Aquaculture, 519, 734770. [DOI:10.1016/j.aquaculture.2019.734770]
33. Negrini, C., Castro, C. S. D., Bittencourt-Guimarães, A. T., Frozza, A., Ortiz-Kracizy, R. and Cupertino-Ballester, E. L., 2017. Stocking density for freshwater prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae) in biofloc system. Latin american journal of aquatic research, 45(5), 891-899.‌ [DOI:10.3856/vol45-issue5-fulltext-3]
34. Nguyen, N. H., Trinh, L. T., Chau, D. T., Baruah, K., Lundh, T. and Kiessling, A., 2019. Spent brewer's yeast as a replacement for fishmeal in diets for giant freshwater prawn (Macrobrachium rosenbergii), reared in either clear water or a biofloc environment. Aquaculture Nutrition, 25(4), 970-979.‌ [DOI:10.1111/anu.12915]
35. NRC. 1994. Nutrient Requirements of Poultry, 9th Rev. Ed. Na-tional Academy Press, Washington, DC., USA.
36. Panigrahi, A., Das, R. R., Sivakumar, M. R., Saravanan, A., Saranya, C., Sudheer, N. S. and Gopikrishna, G., 2020. Bio-augmentation of heterotrophic bacteria in biofloc system improves growth, survival, and immunity of Indian white shrimp Penaeus indicus. Fish & Shellfish Immunology, 98, 477-487. [DOI:10.1016/j.fsi.2020.01.021] [PMID]
37. Piedrahita, R.H., 2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 226, 35-44. [DOI:10.1016/S0044-8486(03)00465-4]
38. Pinto, P. H. O., Rocha, J. L., do Vale Figueiredo, J. P., Carneiro, R. F. S., Damian, C., de Oliveira, L. and Seiffert, W. Q., 2020. Culture of marine shrimp (Litopenaeus vannamei) in biofloc technology system using artificially salinized freshwater: Zootechnical performance, economics and nutritional quality. Aquaculture, 734960.‌ [DOI:10.1016/j.aquaculture.2020.734960]
39. Purwono, A. R., Hibbaan, M. and Budihardjo, M. A., 2017. Ammonia-Nitrogen (NH3-N) and Ammonium-Nitrogen (NH4-N) Equilibrium on The Process of Removing Nitrogen By Using Tubular Plastic Media. Journal of Materials and Environmental Science, 8, 4915-4922.
40. Reid, I. R., Ames, R. W., Evans, M. C., Gamble, G. D. and Sharpe, S. J., 1993. Effect of calcium supplementation on bone loss in postmenopausal women. New England Journal of Medicine, 328, 460-464. [DOI:10.1056/NEJM199302183280702] [PMID]
41. Schneider, O., Sereti, V., Eding, E. H. and Verreth, J. A. J., 2005. Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacultural Engineering, 32, 379-401. [DOI:10.1016/j.aquaeng.2004.09.001]
42. Shi, X., Li, D., Zhuang, P., Nie, F. and Long, L., 2006. Comparative blood biochemistry of Amur sturgeon, Acipenser schrenckii, and Chinese surgeon, Acipenser sinensis. Fish Physiology and Biochemistry, 32(1), 63. [DOI:10.1007/s10695-006-7134-9] [PMID]
43. Sierra-De La Rosa, J. F., 2009. Cultivo de tilapia roja en un sistema super-intensivo de agua marina y biofloc. Descripción de un ensayo de cultivo en el departamento de Bolívar, Caribe colombiano. Programa de Diversificación Corporación Centro de Investigación de la Acuacultura de Colombia.
44. Sobeck, D. C. and Higgins, M. J., 2002. Examination of three theories for mechanisms of cation-induced bioflocculation. Water Research, 36, 527-538. [DOI:10.1016/S0043-1354(01)00254-8]
45. Xu, W. J., Pan, L. Q., Sun, X. H. and Huang, J., 2013. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero‐water exchange culture tanks. Aquaculture Research, 44(7), 1093-1102. [DOI:10.1111/j.1365-2109.2012.03115.x]
46. Xu, W., Xu, Y., Su, H., Hu, X., Xu, Y., Li, Z. and Cao, Y., 2020. Effects of feeding frequency on growth, feed utilization, digestive enzyme activity and body composition of Litopenaeus vannamei in biofloc-based zero-exchange intensive systems. Aquaculture, 522, 735079. [DOI:10.1016/j.aquaculture.2020.735079]
47. Xu, W. J., Pan, L. Q., 2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356, 147-152. [DOI:10.1016/j.aquaculture.2012.05.022]



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fakhari R, Adineh H, Jafaryan H, Harsij M, Sudagar M. Effects of calcium carbonate nanoparticles on water quality, growth and metabolic activity of Macrobrachium nipponense in zero-water exchange biofloc system. Sustainable Aquaculture. Health. Management. J. 2020; 6 (1) :93-104
URL: http://ijaah.ir/article-1-215-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 1 (2020) Back to browse issues page
Persian site map - English site map - Created in 0.07 seconds with 44 queries by YEKTAWEB 4645