[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 5, Issue 1 (5-2019) ::
I. j. Aqua. Anim. Health 2019, 5(1): 57-70 Back to browse issues page
Impact of dietary supplementation of Chlorella vulgaris (Beijerinck, 1890) on the growth, antioxidant defense and immune status of the grey mullet, Mugil cephalus (Linnaeus, 1758)
P Akbary , Z Aminikhoei
Abstract:   (166 Views)

The primary aim of the current study has been to examine the impacts of dietary supplementary of Chlorella vulgaris (Beijerinck) powder (CP) different levels on the anti-oxidant enzyme activities, growth, and immune responses of the juvenile Mugil cephalus (Linnaeus). Experimental Fish (15 ± 0.1g) was fed diets enriched with 0 (control), 5, 10, and 15 g CP per kg feed for eight weeks period. After the feeding trial period, the fish were challenged against pathogenic bacteria (Photobacterium damselae (subsp. piscicida)) for evaluating the resistance of infected fish to diseases. According to the results, fish growth performance was significantly improved with increasing CP levels at CP10 and CP15. Antioxidant-stimulated activity was observed with dietary CP where total antioxidant capacities (TAC), glutathione (GSH), and super-oxide dismutase (SOD) augmented, while malondialdehyde (MDA) decreased significantly in fish fed CP. Furthermore, serum lysozyme activity of fish fed three levels of CP has been considerably enhanced in comparison with the control group (p <0.05). Moreover, CP supplementation at 10 and 15 g dose induced kidney phagocyte and respiratory burst activity which was maximized at 15 g CP. Meanwhile, feeding 10 and 15 g of CP diets decreased mortality in M. cephalus after challenge with P. damselae.  The present study indicated the role of optimal doses Chlorella vulgaris extract (10 and 15 g kg -1 feed) on growth and antioxidant defense and immune status of grey mullet.


 

Keywords: Chlorella vulgaris. Mugil cephalus. Kidney phagocytic, Respiratory burst, Lysozyme, Superoxide dismutase (SOD)
Full-Text [PDF 460 kb]   (38 Downloads)    
Type of Study: Research | Subject: Aquaculture and Health management
Received: 2019/02/10 | Accepted: 2019/05/7 | Published: 2019/05/15
References
1. Andreoni F. & Magnani M. (2014) Photobacteriosis: prevention and diagnosis. Journal of immunolgy Research 2014, 1-7. [DOI:10.1155/2014/793817] [PMID] [PMCID]
2. Andrews S.R., Sahu N.P., Pal, A.K. & Kumar S. (2009) Haematological modulation and growth of Labeo rohita fingerlings: effect of dietary mannan oligosaccharide, yeast extract, protein hydrolysate and chlorella. Aquaculture Research 41, 61-69. [DOI:10.1111/j.1365-2109.2009.02304.x]
3. Ardó L, Yin G, Xu P, Váradi L, Szigeti G, Jeney Z Jeney G (2008) Chinese herbs (Astragalus membranaceus and Lonicera japonica) and boron enhance the non-specific immune response of Nile tilapia (Oreochromis niloticus) and resistance against Aeromonas hydrophila. Aquaculture 275, 26-33. [DOI:10.1016/j.aquaculture.2007.12.022]
4. Atli G. & Canli M. (2010) Response of antioxidante systemof freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures. Ecotoxicology and Environmental Safety 73: 1884-1889. [DOI:10.1016/j.ecoenv.2010.09.005] [PMID]
5. Awad E. & Awaad A. (2017) Role of medicinal plants on growth performance and immune status in fish. Fish & Shellfish Immunology 67, 40-54. [DOI:10.1016/j.fsi.2017.05.034] [PMID]
6. Badwy T.M., Ibrahim E. & Zeinhom M. (2008) Partial replacement of fish meal with dried microalga (Chlorella spp. and Scenedesmus spp.) in Nile tilapia (Oreochromis niloticus) diets. In: 8th International Symposium on Tilapia in Aquaculture pp 801-811.
7. Bai S., Koo J.W., Kim K.W. & Kim S.K. (2001) Effects of Chlorella powder as a feed additive on growth performance in juvenile Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquaculture Research 32, 92-98. [DOI:10.1046/j.1355-557x.2001.00008.x]
8. Becker W. (2007) 18 Microalgae in Human and Animal Nutrition.In book: Handbook of microalgal culture. Biotechnology Applied Phycolology 1, 312-315. [DOI:10.1002/9780470995280.ch18]
9. Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
10. Choi Y.H., Lee B.J., Nam, T.J. (2015) Effect of dietary inclusion of Pyropia yezoensis extract on biochemical andimmune responses of olive flounder Paralichthys olivaceus. Aquaculture 435, 347-353. [DOI:10.1016/j.aquaculture.2014.10.010]
11. Defoirdt T., Boon N., Sorgeloos P., Verstraete W. & Bossier P. (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnology 25, 472-479. [DOI:10.1016/j.tibtech.2007.08.001] [PMID]
12. Diler I., Tekinay A.A., Guroy D., Guroy B.K. & Soyuturk M. (2007) Effects of Ulva rigida on the growth, feed intake and body composition of common carp, Cyprinus carpio L. Journal of Biology Science 7, 305-308. [DOI:10.3923/jbs.2007.305.308]
13. Doucha, J. (1998) The chlorella programme in the czech republic. Inst Microbiol, Czech Acad Sci, 16.
14. Ellis A.E. (1990). Lysozyme Assays: In Stolen JS, Fletcher TC, Anderson DP, Roberson BS,Van Muiswinkel WB, editors.Techniques in: Fish Immunology. Fair Haven, NJ: SOS Publications.101-103.
15. Ergün S., Soyutürk M., Güroy B., Güroy D. & Merrifield D. (2009) Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquaculture International 17, 355-361. [DOI:10.1007/s10499-008-9207-5]
16. FAO I. (2015) The State of Food Insecurity in the World 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. Food and Agriculture Organization Publications, Rome.
17. Hasegawa T., Yoshikai Y., Okudam M. & Nomoto K. (1990) Accelerated restoration of the leukocyte number and augmented resistance against Eschericia coli in cyclophosphamide-treated rats orally administered with a hot water extract of Chlorella vulgaris. International Journal of Immunopharmacology 12, 883-891. [DOI:10.1016/0192-0561(90)90007-A]
18. Jung J-Y., Damusaru J.H., Park Y., Kim K., Seong M., Je H-W., Kim S.& Bai S.C. (2017) Autotrophic biofloc technology system (ABFT) using Chlorella vulgaris and Scenedesmus obliquus positively affects performance of Nile tilapia (Oreochromis niloticus). Algal Reserch 27, 259-264. [DOI:10.1016/j.algal.2017.09.021]
19. Khani M., Soltani M., Shamsaie Mehrjan M., Foroudi F. & Ghaeni M. (2017) The effects of Chlorella vulgaris supplementation on growth performance, blood characteristics, and digestive enzymes in Koi (Cyprinus carpio). Iranian Journal of Fisheries Science 16 (2), 832-843.
20. Kim D.H.& Austin B. (2006) Innate immune responses in rainbow trout (Oncorhynchus mykiss,Walbaum 1792) induced by probiotics. Fish & Shellfish Immunology 21(5), 513-524. [DOI:10.1016/j.fsi.2006.02.007] [PMID]
21. Kim K.W., Bai S.C., Koo J.W., Wang X. & Kim S.K. (2002) Effects of dietary Chlorella ellipsoidea supplementation on growth, blood characteristics, and whole‐body composition in juvenile Japanese flounder Paralichthys olivaceus. Journal of World Aquaculture Society 33 (4), 425-431. [DOI:10.1111/j.1749-7345.2002.tb00021.x]
22. Morris H.J., Carrillo O., Almarales A., Bermúdez R.C., Lebeque Y., Fontaine R., Llauradó G. & Beltrán Y. (2007) Immunostimulant activity of an enzymatic protein hydrolysate from green microalga Chlorella vulgaris on undernourished mice. Enzyme Microbiolgy Technology 40, 456-460. [DOI:10.1016/j.enzmictec.2006.07.021]
23. Parry J.r., R.M., Chandan R.C. & Shahani K.M. (1965) A rapid and sensitive assay of muramidase. Proceedings of the Society for Experimental Biology and Medicine 119 (2), 384-386. [DOI:10.3181/00379727-119-30188] [PMID]
24. Rahimnejad S., Lee S.M., Park H.G. & Choi J. (2017) Effects of Dietary Inclusion of Chlorella vulgaris on Growth, Blood Biochemical Parameters, and Antioxidant Enzyme Activity in Olive Flounder, Paralichthys olivaceus. Journal of World Aquaculture Society 48 (1), 103-112. [DOI:10.1111/jwas.12320]
25. Safi C., Zebib B., Merah O., Pontalier P.Y. & Vaca-Garcia C. (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renewable and Sustainable Energy Reviews 35, 265-278. [DOI:10.1016/j.rser.2014.04.007]
26. Secombes C.J. (1990) Isolation of salmonid macrophages and analysis of their killing activity. In: Stolen J.S., Fletcher T.C., Anderson D., Robertson B.S., van Muiswinkel W.B. (Eds.), Techniques in Fish Immunology, vol. I. SOS Publications, Fair Haven, NJ, pp. 137- 154.
27. Shi X., Luo Z., Chen F., Wei C.C., Wu K., Zhu X.M. &, Liu X. (2017) Effect of fish meal replacement by Chlorella meal with dietary cellulase addition on growth performance, digestive enzymatic activities, histology and myogenic genes' expression for crucian carp Carassius auratus. Aquaculture Research 48, 3244-3256. [DOI:10.1111/are.13154]
28. Tibbetts S.M., Mann J. & Dumas A. (2017) Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture 481, 25-39. [DOI:10.1016/j.aquaculture.2017.08.018]
29. Xu W., Gao Z., Qi Z., Qiu M., Peng J-q .& Shao R. (2014) Effect of dietary chlorella on the growth performance and physiological parameters of gibel carp, Carassius auratus gibelio. Turkish Journal of Fish Aquatic Science 14, 53-57.
30. Zhang Q., Qiu M., Xu W., Gao Z., Shao R. & Qi Z. (2014) Effects of dietary administration of Chlorella on the immune status of gibel carp, Carassius auratus gibelio. Italian Journal of Animal Science 13, 3168. [DOI:10.4081/ijas.2014.3168]



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbary P, Aminikhoei Z. Impact of dietary supplementation of Chlorella vulgaris (Beijerinck, 1890) on the growth, antioxidant defense and immune status of the grey mullet, Mugil cephalus (Linnaeus, 1758). I. j. Aqua. Anim. Health. 2019; 5 (1) :57-70
URL: http://ijaah.ir/article-1-181-en.html


Volume 5, Issue 1 (5-2019) Back to browse issues page
Persian site map - English site map - Created in 0.06 seconds with 31 queries by YEKTAWEB 4006