[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 4, Issue 1 (2-2018) ::
I. j. Aqua. Anim. Health 2018, 4(1): 1-12 Back to browse issues page
Evaluation of antimicrobial activity of peptides isolated from Cerastoderma and Didacta bivalves habitat in the southern shores of the Caspian Sea
A Ghorbanalizadeh , A Moshfegh , M Setorki
Abstract:   (1275 Views)
The antibacterial effects of methanol, ethanol, chloroform extracts and alcalase hydrolysis of Cerastoderma and Didacta were investigated against Salmonella typhi, Salmonella paratyphi and Staphylococcus aureus by disk diffusion method, Minimum Inhibitory Concentration and Minimum Bactericidal Concentration. Methanolic and ethanolic extracts of Cerastoderma showed the highest effects against S. typhi (20.33 ± 0.33 and 12.33 ± 0.33) and S. paratyphi (22.66 ± 1.45 and 15.33 ± 0.33), however, the same effects against S. aureus (18.00 ± 0.00 and 17.00 ± 0.00) were observed for two bivalves. Chloroform extract of Cerastoderma and Didacta showed similar effects in controlling S. paratyphi (8.00 ± 0.58 vs 10.00 ± 0.57) and S. aureus (16.00 ± 1.15 vs 16.00 ± 1.15) in concentrations of 10 and 5 mg ml-1. Chloroform extract of Cerastoderma exhibited higher effect than that from Didacta against S. typhi (11.00 ± 1.73 vs 8.00 ± 0.58) and the dilution of 10 mg ml-1 had the most suitable performance. The enzymatic hydrolysis of the Cerastoderma and Didacta showed the same performance in controlling of S. typhi (13.67 ± 4.37 vs 13.33 ± 1.76) and S. paratyphi (17.00 ± 0.58 vs 15.33 ± 1.45). However, the enzymatic hydrolysis of Cerastoderma showed better effect than that of Didacta in controlling S. aureus (18.00 ± 1.15 vs 13.00 ± 2.30), and the 10 and 5 mg ml-1 dilutions were the most appropriate concentrations. It is concluded that Cerastoderma can be used as a resource with potent antibacterial compounds in the preparation of natural antimicrobial agents.
Keywords: Antibacterial activity, Extracts, Cerastoderma, Didacta
Full-Text [PDF 495 kb]   (303 Downloads)    
Type of Study: Research | Subject: Bacterial Disease
Received: 2017/10/7 | Accepted: 2018/01/18 | Published: 2018/02/12
1. Awuor OL, Kirwa ME, Jackim MF, Betty M. (2017). Optimization of Alcalase Hydrolysis Conditions for Production of Dagaa (Rastrineobola argentea) Hydrolysate with Antioxidative Properties. Indian journal of Chemistry, 3:122. [DOI:10.4172/2469-9764.1000122]
2. Birshtein YA, Vinogradova LG, Kondakov NN, Astakhova MS, Romanova NN. (1968). Atlas of invertebrates of the Caspian Sea. Pishchevaya Promyshlennost, Moscow. [In Russian.] Translated by: Delinad L. and Nazari F. (1978). 1st edition. [In Persian]
3. Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR. (2009). Marine natural products. Natural Product Reports, 26(2), 170-244. [DOI:10.1039/b805113p]
4. Bulet P, Stöcklin R, Menin L. (2004). Anti-microbial peptides: from invertebrates to vertebrates. Immunological Reviews, 198, 169-84. [DOI:10.1111/j.0105-2896.2004.0124.x]
5. Defer D, Bourgougnon N, Fleury Y. (2009). Screening for antibacterial and antiviral activities in three bivalve and two gastropod marine molluscs. Aquaculture, 293, 1–7. [DOI:10.1016/j.aquaculture.2009.03.047]
6. Donnell, G, Russe A. (1999). Antiseptics and Disinfectants: Activity, Action, and Resistance. Clinical Microbiology Reviews, 12(1), 147-179. [DOI:10.1128/CMR.12.1.147]
7. Franklin TJ, Snow GA. (2005). Biochemistry and molecular biology of antimicrobial drug action. 6th edition. New York: Springer, 135.
8. Haug T, Stensvag K, Olsen M, Orjan M, Sandsdalen E, Styrvold O.B. (2004). Antibacterial activities in various tissues of the horse mussel, Modiolus modiolus. Journal of Invertebrate Pathology, 85(2), 112-119. [DOI:10.1016/j.jip.2004.02.006]
9. Kumar TS, Madhumathi K, Rubaiya Y, Doble M. (2015). Dual Mode Antibacterial Activity of Ion Substituted Calcium Phosphate Nanocarriers for Bone Infections. Frontiers in Bioengineering and Biotechnology, 1: 3, 59.
10. Kumaravel K, Ravichandran S, Balasubramanian T, Siva Subramanian K, Bilal AB. (2010). Antimicrobial effect of five seahorse species from the Indian coast. British Journal of Pharmacology and Toxicology, 1, 62–66.
11. Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ. (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of applied microbiology, 91(3):453-62. [DOI:10.1046/j.1365-2672.2001.01428.x]
12. Marshall SH, Arenas G. (2003). Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Journal of Biotechnology, 6 (3), 60-67. [DOI:10.2225/vol6-issue3-fulltext-1]
13. Normark BH, Normark S. (2002). Evolution and spread of antibiotic resistance. Journal of International Medical Research, 252, 91–106. [DOI:10.1046/j.1365-2796.2002.01026.x]
14. Seo JK, Crawford JM, Stone KL, Noga EJ. (2005). Purification of a novel arthropod defencin from the American oyster, Crassostrea virginica. Biochemical and Biophysical Research Communications, 338, 1998-2004. [DOI:10.1016/j.bbrc.2005.11.013]
15. Shakouri A, Omoleila Javanmard Kamy Ghazy Mahalleh, Fariborz Soheili (2015). Antibacterial effect of different extraction from organs Sea Urchin, Echinometra mathaei in Chabahar Beach. Journal of Marine Biology, 25. [In Persian]
16. Sugesh S, Mayavu P. (2013). Antimicrobial activities of two edible bivalves M. meretrix and M. casta. Pakistan journal of Biological Sciences, 16 (1), 38-43. [DOI:10.3923/pjbs.2013.38.43]
17. Sumita S, Chatterji A, Das P. (2009). Effect of different extraction procedures on antimicrobial activity of marine bivalves: A comparison. Pertanika Journal of Tropical Agricultural Science, 32: 77-83.
18. Wang GD, Liu BZ, Tang BJ, Zhang T, Xiang JH. (2006). Pharmacological and immunocytochemical investigation of the role of catecholamines on larval metamorphosis by β-adrenergic-like receptor in the bivalve Meretrix meretrix. Aquaculture, 258, 611–618. [DOI:10.1016/j.aquaculture.2006.04.031]
19. Yu D, Sheng Z, Xu X. (2006). A novel antimicrobial peptide from salivary glands of the hard tick, Ixodes sinensis. Peptides, 27, 31-35. [DOI:10.1016/j.peptides.2005.06.020]
20. Zasloff, M. (2002 b). Antimicrobial peptides of multicellular organisms. Nature, 415, 389-395. [DOI:10.1038/415389a]
21. Zasloff, M. (2002a). Antimicrobial Peptides in Health and Disease. The New England Journal of Medicine, 347, 1199-1200. [DOI:10.1056/NEJMe020106]
22. Zasloff, M. (2006). Defending the epithelium. Nature Medicine, 12, 607-608. [DOI:10.1038/nm0606-607]

XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbanalizadeh A, Moshfegh A, Setorki M. Evaluation of antimicrobial activity of peptides isolated from Cerastoderma and Didacta bivalves habitat in the southern shores of the Caspian Sea. I. j. Aqua. Anim. Health. 2018; 4 (1) :1-12
URL: http://ijaah.ir/article-1-150-en.html

Volume 4, Issue 1 (2-2018) Back to browse issues page
Persian site map - English site map - Created in 0.06 seconds with 31 queries by YEKTAWEB 3862