:: Volume 8, Issue 1 (2022) ::
Sustainable Aquaculture. Health. Management. J. 2022, 8(1): 1-15 Back to browse issues page
Research Article: Controlling the microbial growth in Rainbow trout (Oncorhynchus mykiss) by polylactic acid-based packaging containing Lippia citriodora nanoemulsion
M Hojatoleslami , H Ahari * , K Larijani , A Sharifan
Abstract:   (1954 Views)

In recent years, many studies were carried out for developing new food packaging systems. There is a variety of synthetic and natural antimicrobial compounds used to control the growth of microorganisms. The use of natural antimicrobial agents, due to the low side effects and high antibacterial potential, has captured the attention of scientists. The main aim of this study was to produce polylactic acid-based biodegradable active films containing lemon verbena Essential oil nanoemulsion to control the growth of two common foodborne pathogenic bacteria (Staphylococcus aureus and Escherichia coli) in Rainbow Trout. To aim this, the antibacterial activity (in vitro) of the films were assessed under MIC and MBC assays using the microdilution method. The nanoemulsion was prepared by ultrasonic waves. Based on dynamic light scattering, the mean droplet size was reported at about 22.4 nm. Based on the antibacterial results, the growth of both microorganisms was significantly decreased after 0, 3, and 7 days of storage in comparison with the control group (p <0.05). To sum up, the presence of Lippia citriodora Nanoemulsion in the matrix of the polylactic acid film showed notable antibacterial activity during 7 days of storage at 4˚C (refrigerator). It can be concluded that this film can be a good candidate for food packaging purposes to control the growth of microorganisms.


 
Keywords: Antimicrobial packaging, Polylactic acid, Lippia citriodora, Nanoemulsion, Rainbow trout, Shelf life
Full-Text [PDF 561 kb]   (747 Downloads)    
Type of Study: Original research papers | Subject: Treatment stategies with herbal or others
Received: 2021/12/12 | Accepted: 2022/01/27 | Published: 2022/08/3
References
1. Ahari, H. and Naeimabadi, M., 2021. Employing Nanoemulsions in Food Packaging: Shelf Life Enhancement. Food Engineering Reviews, 13(4), 858-883. [DOI:10.1007/s12393-021-09282-z]
2. Blasi, P., 2019. Poly (lactic acid)/poly (lactic-co-glycolic acid)-based microparticles: An overview. Journal of Pharmaceutical Investigation, 49(4), 337-346. [DOI:10.1007/s40005-019-00453-z]
3. Bonilla, J., Fortunati, E.L.E.N.A., Vargas, M., Chiralt, A. and Kenny, J.M., 2013. Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering, 119(2), 236-243. [DOI:10.1016/j.jfoodeng.2013.05.026]
4. Clayton, K.N., Salameh, J.W., Wereley, S.T. and Kinzer-Ursem, T.L., 2016. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics, 10(5), 054107. [DOI:10.1063/1.4962992] [PMID] [PMCID]
5. Cui, S., Zhao, L. and Lu, Y., 2018. Analysis and discussion on traceability network of food microorganism. Journal of Food Safety and Quality, 9(13), 3514-3517.
6. Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S. and Mozafari, M.R., 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 57. [DOI:10.3390/pharmaceutics10020057] [PMID] [PMCID]
7. Ehsani, A., Hashemi, M., Jazani, N. H., Aliakbarlu, J., Shokri, S. and Naghibi, S. S., 2016. Effect of Echinophora platyloba DC. essential oil and lycopene on the stability of pasteurized cream obtained from cow milk. Veterinary Research Forum, 7(2):139-48.
8. Elemike, E.E., Onwudiwe, D.C., Ekennia, A.C., Ehiri, R.C. and Nnaji, N.J., 2017. Phytosynthesis of silver nanoparticles using aqueous leaf extracts of Lippia citriodora: Antimicrobial, larvicidal and photocatalytic evaluations. Materials Science and Engineering: C, Materials for Biological Applications, 75, 980-989. [DOI:10.1016/j.msec.2017.02.161] [PMID]
9. Espitia, P.J., Fuenmayor, C.A. and Otoni, C.G., 2019. Nanoemulsions: Synthesis, characterization, and application in bio‐based active food packaging. Comprehensive Reviews in Food Science and Food Safety, 18(1), 264-285. [DOI:10.1111/1541-4337.12405] [PMID]
10. Fitsiou, E., Mitropoulou, G., Spyridopoulou, K., Vamvakias, M., Bardouki, H., Galanis, A., Chlichlia, K., Kourkoutas, Y., Panayiotidis, M.Ι. and Pappa, A., 2018. Chemical composition and evaluation of the biological properties of the essential oil of the dietary phytochemical Lippia citriodora. Molecules, 23(1), 123. [DOI:10.3390/molecules23010123] [PMID] [PMCID]
11. Guan, G., Zhang, L., Zhu, J., Wu, H., Li, W. and Sun, Q., 2021. Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. Journal of Hazardous Materials, 402, 123542. [DOI:10.1016/j.jhazmat.2020.123542] [PMID]
12. Hauzoukim, S. S. and Mohanty, B., 2020. Modified atmosphere packaging of fish and fishery products: A review. Journal of Entomology and Zoology Studies, 8, 651-659.
13. Heydari-Majd, M., Ghanbarzadeh, B., Shahidi-Noghabi, M., Najafi, M.A. and Hosseini, M., 2019. A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packaging and Shelf Life, 19, 94-103. [DOI:10.1016/j.fpsl.2018.12.002]
14. Javaherzadeh, R., Bafroee, A.T. and Kanjari, A., 2020. Preservation effect of Polylophium involucratum essential oil incorporated poly lactic acid/nanochitosan composite film on shelf life and sensory properties of chicken fillets at refrigeration temperature. Lwt - Food Science and Technology 118, 108783. [DOI:10.1016/j.lwt.2019.108783]
15. Jayasena, D.D. and Jo, C., 2013. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends in Food Science & Technology, 34(2), 96-108. [DOI:10.1016/j.tifs.2013.09.002]
16. Jebelli Javan, A.S.H.K.A.N., Ghazvinian, K., Mahdavi, A., Javaheri Vayeghan, A.B.B.A.S., Staji, H. and Ghaffari Khaligh, S.A.H.A.R., 2013. The effect of dietary Zataria multiflora Boiss. essential oil supplementation on microbial growth and lipid peroxidation of broiler breast fillets during refrigerated storage. Journal of Food Processing and Preservation, 37(5), 881-888. [DOI:10.1111/j.1745-4549.2012.00714.x]
17. Kaskoos, R.A., 2019. Essential oil analysis by GC-MS and analgesic activity of Lippia citriodora and Citrus limon. Journal of essential oil bearing plants, 22(1), 273-281. [DOI:10.1080/0972060X.2019.1603123]
18. Khoshbouy Lahidjani, L., Ahari, H. and Sharifan, A., 2020. Influence of curcumin‐loaded nanoemulsion fabricated through emulsion phase inversion on the shelf life of Oncorhynchus mykiss stored at 4 C. Journal of Food Processing and Preservation, 44(8), p.e14592. [DOI:10.1111/jfpp.14592]
19. Lu, W.C., Huang, D.W., Wang, C.C., Yeh, C.H., Tsai, J.C., Huang, Y.T. and Li, P.H., 2018. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. Journal of food and drug analysis, 26(1), 82-89. [DOI:10.1016/j.jfda.2016.12.018] [PMID]
20. Maillard, A.P.F., Gonçalves, S., Santos, N.C., de Mishima, B.A.L., Dalmasso, P.R. and Hollmann, A., 2019. Studies on interaction of green silver nanoparticles with whole bacteria by surface characterization techniques. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1861(6), 1086-1092. [DOI:10.1016/j.bbamem.2019.03.011] [PMID]
21. Masarudin, M.J., Cutts, S.M., Evison, B.J., Phillips, D.R. and Pigram, P.J., 2015. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnology, science and applications, 8, 67. [DOI:10.2147/NSA.S91785] [PMID] [PMCID]
22. Mazarei, Z. and Rafati, H., 2019. Nanoemulsification of Satureja khuzestanica essential oil and pure carvacrol; comparison of physicochemical properties and antimicrobial activity against food pathogens. Lwt - Food Science and Technology, 100, 328-334. [DOI:10.1016/j.lwt.2018.10.094]
23. Meshkatalsadat, M.H., Papzan, A.H. and Abdollahi, A., 2011. Determination of bioactive volatile organic components of Lippia citriodora using ultrasonic assisted with headspace solid phase microextraction coupled with GC-MS. Digest Journal of Nanomaterials & Biostructures (DJNB), 6(1).
24. Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A. and McClements, D.J., 2016. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food chemistry, 194, 410-415. [DOI:10.1016/j.foodchem.2015.07.139] [PMID]
25. Molchanova, N., Hansen, P.R. and Franzyk, H., 2017. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules, 22(9), 1430. [DOI:10.3390/molecules22091430] [PMID] [PMCID]
26. Norcino, L.B., Mendes, J.F., Natarelli, C.V.L., Manrich, A., Oliveira, J.E. and Mattoso, L.H.C., 2020. Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging. Food Hydrocolloids, 106, 105862. [DOI:10.1016/j.foodhyd.2020.105862]
27. Odeyemi, O.A., Burke, C.M., Bolch, C.C. and Stanley, R., 2018. Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. International Journal of Food Microbiology, 280, 87-99. [DOI:10.1016/j.ijfoodmicro.2017.12.029] [PMID]
28. Oukerrou, M.A., Tilaoui, M., Mouse, H.A., Leouifoudi, I., Jaafari, A. and Zyad, A., 2017. Chemical composition and cytotoxic and antibacterial activities of the essential oil of Aloysia citriodora palau grown in Morocco. Advances in pharmacological sciences, 2017. [DOI:10.1155/2017/7801924] [PMID] [PMCID]
29. Peidaei, F., Ahari, H., Anvar, S.A.A. and Ataee, M., 2021. Nanotechnology in Food Packaging and Storage: A Review. Iranian Journal of Veterinary Medicine, 15(2), 123-153.
30. Pongsumpun, P., Iwamoto, S. and Siripatrawan, U., 2020. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrasonics sonochemistry, 60, 104604. [DOI:10.1016/j.ultsonch.2019.05.021] [PMID]
31. Ryu, V., McClements, D.J., Corradini, M.G. and McLandsborough, L., 2018. Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion. Food chemistry, 245, 104-111. [DOI:10.1016/j.foodchem.2017.10.084] [PMID]
32. Seong, M. and Lee, D.G., 2017. Silver nanoparticles against Salmonella enterica serotype typhimurium: role of inner membrane dysfunction. Current microbiology, 74(6), 661-670. [DOI:10.1007/s00284-017-1235-9] [PMID]
33. Shahbazi, Y. and Shavisi, N., 2018. Preparation of new nanocomposite film for controlling Listeria monocytogenes and Staphylococcus aureus in raw rainbow trout fillet. Nanomedicine Research Journal, 3(2), 79-88.
34. Shokri, S., Parastouei, K., Taghdir, M. and Abbaszadeh, S., 2020. Application an edible active coating based on chitosan-Ferulago angulata essential oil nanoemulsion to shelf life extension of Rainbow trout fillets stored at 4 C. International Journal of Biological Macromolecules, 153, 846-854. [DOI:10.1016/j.ijbiomac.2020.03.080] [PMID]
35. Singhvi, M.S., Zinjarde, S.S. and Gokhale, D.V., 2019. Polylactic acid: synthesis and biomedical applications. Journal of applied microbiology, 127(6), 1612-1626. [DOI:10.1111/jam.14290] [PMID]
36. Talebi, F., Misaghi, A., Khanjari, A., Kamkar, A., Gandomi, H. and Rezaeigolestani, M., 2018. Incorporation of spice essential oils into poly-lactic acid film matrix with the aim of extending microbiological and sensorial shelf life of ground beef. Lwt - Food Science and Technology, 96, 482-490. [DOI:10.1016/j.lwt.2018.05.067]
37. Yadegarinia, D., Gachkar, L., Rezaei, M.B., Taghizadeh, M., Astaneh, S.A. and Rasooli, I., 2006. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry, 67(12), 1249-1255. [DOI:10.1016/j.phytochem.2006.04.025] [PMID]
38. Zhaleh, S., Shahbazi, Y. and Shavisi, N., 2019. Shelf‐Life Enhancement in Fresh and Frozen Rainbow Trout Fillets by the Employment of a Novel Active Coating Design. Journal of food science, 84(12), 3691-3699. [DOI:10.1111/1750-3841.14851] [PMID]



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 1 (2022) Back to browse issues page