:: Volume 7, Issue 2 (2021) ::
Sustainable Aquaculture. Health. Management. J. 2021, 7(2): 30-43 Back to browse issues page
Research Article: The effect of biofloc-supplemented diets on the Pacific white shrimp (Litopenaeus vannamei): Analysis of water quality, growth performance, and biochemical composition
M Barzamini , M Harsij , H Adineh * , H Jafaryan
Abstract:   (2252 Views)
This study has investigated the impacts of biofloc on water quality, growth parameters, and whole-body composition of the Litopenaeus vannamei juveniles (initial average weight 5.23±0.20 g). Five experimental treatments were designed: Shrimp fed basal diet (Control), 5 and 10% wet biofloc-supplemented diets (W5 and W10), 5 and 10% dried biofloc-supplemented diets (D5 and D10) for 32 days. Experimental tanks (50 liters) as triplicate for each treatment, was stocked 12 shrimps. During the experiment, chemical and physical water parameters were examined and were not different statistically among experimental treatments. At the end of the experiment, in W10 treatment, the growth parameters were significantly higher than the control treatment. Also, in W10 and D5 treatments, feed conversion efficiency (FCE) and feed conversion ratio (FCR) were significantly better than the control. Compared to other treatments, significantly better protein efficiency ratio (PER) and lipid efficiency ratio (LER) were observed in W10 treatment. Results indicated that in W10 and D5 treatments, the protein, ash, and dry matter contents of the shrimp were significantly higher compared to the control treatment. Also, in W10, D5, and D10 treatments, carcass lipid and fiber contents were significantly higher compared to the control. Overall, the best performance was observed in shrimp fed on 10% wet biofloc-supplemented diet.
Keywords: White leg shrimp, Microbial flocs, Growth, Body composition, Water treatment
Full-Text [PDF 624 kb]   (867 Downloads)    
Type of Study: Original research papers | Subject: Aquaculture and Health management
Received: 2020/04/13 | Accepted: 2021/11/6 | Published: 2021/11/11
1. Abbaszadeh, A., Keyvanshokooh, S., Yavari, V., Naderi, M. 2019. Proteome modifications of Pacific white shrimp (Litopenaeus vannamei) muscle under biofloc system. Aquaculture Nutrition, 25 (2), 358-366. [DOI:10.1111/anu.12861]
2. Adineh, H., Naderi, M., Hamidi, M.K., Harsij, M. 2019. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish and Shellfish Immunology, 95, 440-448. [DOI:10.1016/j.fsi.2019.10.057]
3. American Public Health Association (APHA) 1998. In: Clescert, L., Greenberg, A., Eaton, A. (Eds.), Standard Methods for the Examination of Water and Wastewater. 20th edition. Washington, USA.
4. Anand, S., Sudhayam, P., Kumar, S., Kohli, M.P.S., Sundaray, J.K., Sinha, A., Roy Dam, S. 2017. Dietary biofloc supplementation in black tiger shrimp, Penaeus monodon: effects on immunity, antioxidant and metabolic enzyme activities. Aquaculture Research, 48(8), 4512-4523.‌ [DOI:10.1111/are.13276]
5. AOAC. 1995. Official Methods of Analysis of AOAC International. 16thed., Vol. 1 (Cunnif, P. Ed.), AOAC Int. Arlington,Virginia, USA.
6. Avnimelech, Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176 (3-4), 227-235.‌ [DOI:10.1016/S0044-8486(99)00085-X]
7. Avnimelech, Y., Kochba, M. 2009. Evaluation of nitrogen uptake and excretion by tilapia in biofloc tanks, using N-15 tracing. Aquaculture, 287, 163-168. [DOI:10.1016/j.aquaculture.2008.10.009]
8. Bauer, W., Prentice-Hernandez, C., Tesser, M.B., Wasielesky Jr, W., Poersch, L.H. 2012. Substitution of fishmeal with microbial floc meal and soy protein concentrate in diets for the pacific white shrimp Litopenaeus vannamei. Aquaculture, 342, 112-116. [DOI:10.1016/j.aquaculture.2012.02.023‌]
9. Browdy, C.L., Ray, A.J., Leffler, W., Avnimelech, Y. 2012. Biofloc-based aquaculture systems. In: Aquaculture Production Systems, 278-307. [DOI:10.1002/9781118250105.ch12]
10. Burford, M.A., Thompson, P.J., McIntosh, R.P., Bauman, R.H., Pearson, D.C. 2004. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high intensity, zero-exchange system. Aquaculture, 232 (1-4), 525-537. [DOI:10.1016/S0044-8486(03)00541-6]
11. Chen, J., Ren, Y., Wang, G., Xia, B., Li, Y. 2018. Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka). Fish and Shellfish Immunology, 72, 143-152. [DOI:10.1016/j.fsi.2017.10.061]
12. Crab, R., Chielens, B., Wille, M., Bossier, P., Verstraete, W. 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41(4), 559-567.‌ [DOI:10.1111/j.1365-2109.2009.02353.x]
13. Crab, R., Defoirdt, T., Bossier, P., Verstraet, W. 2012. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356-357, 351-356. [DOI:10.1016/j.aquaculture.2012.04.046]
14. Cuzon, G., Lawrence, A., Gaxiola, G., Rosas, C., Guillaume, J. 2004. Nutrition of Litopenaeus vannamei reared in tanks or in ponds. Aquaculture, 235(1-4), 513-551. https://doi.org/10.1016/j.aquaculture.2003.12.022 [DOI:10.1016/j.aquaculture.2003.12.022‌]
15. De Schryver, P., Crab, R., Defoirdt, T., Boon, N., Verstraete, W. 2008. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, 277(3-4), 125-137. [DOI:10.1016/j.aquaculture.2008.02.019]
16. Ekasari, J., Azhar, M.H., Surawidjaja, E.H., Nuryati, S., De Schryver, P., Bossier, P. 2014. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish and Shellfish Immunology, 41, 332-339. [DOI:10.1016/j.fsi.2014.09.004]
17. Emerenciano, M., Ballester, E.L., Cavalli, R.O., Wasielesky, W. 2011. Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: growth performance, floc composition and salinity stress tolerance. Aquaculture International, 19(5), 891-901.‌ [DOI:10.1007/s10499-010-9408-6]
18. Gaona, C.A.P., Poersch, L.H., Krummenauer, D., Foes, G.K., Wasielesky, W.J. 2011. The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. International Journal of Recirculating Aquaculture, 12 (1).‌ [DOI:10.21061/ijra.v12i1.1354]
19. Huang, J., Yang, Q., Ma, Z., Zhou, F., Yang, L., Deng, J., Jiang, S. 2017. Effects of adding sucrose on Penaeus monodon (Fabricius, 1798) growth performance and water quality in a biofloc system. Aquaculture Research, 48(5), 2316-2327.‌ [DOI:10.1111/are.13067]
20. Izquierdo, M., Forster, I., Divakaran, S., Conquest, L., Decamp, O., Tacon, A. 2006. Effect of green and clear water and lipid source on survival, growth and biochemical composition of Pacific white shrimp Litopenaeus vannamei. Aquaculture nutrition, 12(3), 192-202.‌ [DOI:10.1111/j.1365-2095.2006.00385.x]
21. Jatobá, A., Vieira, F.D.N., Silva, B.C.D., Soares, M. Mouriño, J.L.P., Seiffert, W.Q. 2017. Replacement of fishmeal for soy protein concentrate in diets for juvenile Litopenaeus vannamei in biofloc-based rearing system. Revista Brasileira de Zootecnia, 46(9), 705-713.‌ [DOI:10.1590/s1806-92902017000900001]
22. Ju, Z.Y., Forster, I., Conquest, L., Dominy, W., Kuo, W.C., Horgen, F.D. 2008. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research, 39, 118-133. [DOI:10.1111/j.1365-2109.2007.01856.x]
23. Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., Sourinejad, I. 2017. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, 48(4), 1491-1501.‌ [DOI:10.1111/are.12985]
24. Krummenauer, D., Samocha, T., Poersch, L., Lara, G., Wasielesky, W. 2014. The reuse of water on the culture of pacific white shrimp, Litopenaeus vannamei, in BFT system. Journal of the World Aquaculture Society, 45(1), 3-14. [DOI:10.1111/jwas.12093]
25. Kuhn, D.D., Boardman, G.D., Lawrence, A.L., Marsh, L., Flick, Jr, G.J. 2009. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture, 296 (1-2), 51-57.‌ [DOI:10.1016/j.aquaculture.2009.07.025]
26. Kuhn, D.D., Lawrence, A.L., Boardman, G.D., Patnaik, S., Marsh, L., Flick, Jr, G.J. 2010. Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 303(1-4), 28-33.‌ [DOI:10.1016/j.aquaculture.2010.03.001]
27. Lin, Y.C., Chen, J.C. 2001. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1), 109-119.‌ [DOI:10.1016/S0022-0981(01)00227-1]
28. Lin, Y.C., Chen, J.C. 2003. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224(1-4), 193-201.‌ [DOI:10.1016/S0044-8486(03)00220-5]
29. Maciel, J.C., Francisco, C.J., Miranda-Filho, K.C. 2018. Compensatory growth and feed restriction in marine shrimp production, with emphasis on biofloc technology. Aquaculture International, 26(1), 203-212.‌ [DOI:10.1007/s10499-017-0209-z]
30. Maicá, P.F., Borba, M.R.D., Martins, T.G., Wasielesky Junior, W. 2014. Effect of salinity on performance and body composition of Pacific white shrimp juveniles reared in a super-intensive system. Revista Brasileira de Zootecnia, 43(7), 343-350. [DOI:10.1590/S1516-35982014000700001]
31. Ponce-Palafox, J.T., Ruíz-Luna, A., Gómez, M.G.U., Esparza-Leal, H.M., Arredondo-Figueroa, J.L., Martinez-Palacios, C.A., Ross, L.G. 2013. A response-surface analysis of the relative importance of the temperature, salinity and body weight on the respiratory metabolism of the white shrimp Litopenaeus vannamei (Boone, 1931). Marine and freshwater behaviour and physiology, 46(6), 399-417.‌ [DOI:10.1080/10236244.2013.849058]
32. Ray, A.J., Dillon, K.S., Lotz, J.M. 2011. Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacultural Engineering, 45(3), 127-136.‌ [DOI:10.1016/j.aquaeng.2011.09.001]
33. Ray, A.J., Lewis, B.L. Browdy, C.L., Leffler, J.W. 2010. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299 (1-4), 89-98.‌ [DOI:10.1016/j.aquaculture.2009.11.021]
34. Ray, A.J., Lotz, J.M. 2017. Comparing salinities of 10, 20, and 30‰ in intensive, commercial-scale biofloc shrimp (Litopenaeus vannamei) production systems. Aquaculture, 476, 29-36.‌ [DOI:10.1016/j.aquaculture.2017.03.047]
35. Sakkaravarthi, K. 2015. Determination of Effective Microbial Community for Biofloc Shrimp Culture System. Survival, 70(80), 80.‌
36. Samocha, T.M., Patnaik, S., Speed, M., Ali, A.M., Burger, J.M., Almeida, R.V., Brock, D.L. 2007. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2), 184-191.‌ [DOI:10.1016/j.aquaeng.2006.10.004]
37. Saoud, I.P., Davis, D.A., Rouse, D.B. 2003. Suitability studies of inland well waters for Litopenaeus vannamei culture. Aquaculture, 217, 373-383. [DOI:10.1016/S0044-8486(02)00418-0]
38. Schveitzer, R., Arantes, R., Costódio, P.F.S., Espírito Santo, C.M., Arana, L.V., Seiffert, W.Q., Andreatta, E.R. 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59-70.‌ [DOI:10.1016/j.aquaeng.2013.04.006]
39. Shyne Anand, P.S., Kohli, M.P.S., Kumar, S., Sundaray, J.K., Dam Roy, S., Venkateshwarlu, G., Sinha, A., Pailan, G. 2014. Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 418-419, 108-115. [DOI:10.1016/j.aquaculture.2013.09.051]
40. Tacon, A.G.J., Cody, J.J., Conquest, L.D., Divakaran, S., Forster, I.P., Decamp, O.E. 2002. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition, 8, 121-137. [DOI:10.1046/j.1365-2095.2002.00199.x]
41. Taw, N. 2010. Biofloc technology expanding at white shrimp farms. Global Advocate may/june, 24-26.
42. Valle, B.C.S., Dantas, E.M., Silva, J.F.X., Bezerra, R.S., Correia, E.S., Peixoto, S.R.M., Soares, R.B. 2015. Replacement of fishmeal by fish protein hydrolysate and biofloc in the diets of Litopenaeus vannamei postlarvae. Aquaculture Nutrition, 21(1), 105-112.‌ [DOI:10.1111/anu.12149]
43. Wasielesky, Jr W., Atwood, H., Stokes, A., Browdy, C.L. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1-4), 396-403.‌ [DOI:10.1016/j.aquaculture.2006.04.030]
44. Xu, W.J., Morris, T.C., Samocha, T.M. 2018. Effects of two commercial feeds for semi-intensive and hyper-intensive culture and four C/N ratios on water quality and performance of Litopenaeus vannamei juveniles at high density in biofloc-based, zero-exchange outdoor tanks. Aquaculture,‌ 490, 194-202. [DOI:10.1016/j.aquaculture.2018.02.028]
45. Xu, W.J., Pan, L.Q. 2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356-357, 147-152. [DOI:10.1016/j.aquaculture.2012.05.022]

XML     Print

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 2 (2021) Back to browse issues page