:: Volume 6, Issue 1 (2020) ::
Sustainable Aquaculture. Health. Management. J. 2020, 6(1): 54-62 Back to browse issues page
Some biochemical responses of Salmo trutta caspius in response to transport stress
R. Kazempoor * , S. Sh. Alavinezhad
Abstract:   (2888 Views)
One of the most important and influential stress causing problem and secondary diseases in fish is transport stress. The aim of this study was to evaluate the physiological effects of acute stress of fish transportation on some biochemicals in Salmo trutta caspius. A total of 100 fish were transported in plastic bags for 6 h and then released in 300-l tanks. Blood samples were taken after 6, 12, 24 and 48 h after a 6-h transportation (n=15). Based on the results, blood glucose increased compared to the basal value (p<0.05) after 6 h but the value was decreased at 12 and 24 h compared to that of 6 h. Cortisol value was increased significantly (p<0.05) in all sampling times.  Unexpectedly, protein content was significantly increased (p<0.05) at 24h. On the other hands, other parameters uch as Na+, Cl-, K+, did not show a significant  variation after transportation (p>0.05).
Keywords: Salmo trutta caspius, stress, transport, blood, biochemical
Full-Text [PDF 488 kb]   (1120 Downloads)    
Type of Study: Original research papers | Subject: Aquaculture and Health management
Received: 2020/06/15 | Accepted: 2020/08/13 | Published: 2020/08/15
References
1. Barcelos, R. C. S., Rosa, H. Z., Roversi, K., dos Santos Tibúrcio-Machado, C., Inchaki, P. T., Burger, M. E. and de Souza Bier, C. A., 2020. Apical periodontitis induces changes on oxidative stress parameters and increases Na+/K+-ATPase activity in adult rats. Archives of Oral Biology, 118, 104849. [DOI:10.1016/j.archoralbio.2020.104849] [PMID]
2. Barton, B. A., 2002. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and comparative biology, 42(3), 517-525. [DOI:10.1093/icb/42.3.517] [PMID]
3. Brinn, R., Marcon, J., McComb, D., Gomes, L., Abreu, J. and Baldisseroto, B., 2012. Stress responses of the endemic freshwater cururu stingray (Potamotrygon cf. histrix) during transportation in the Amazon region of the Rio Negro. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 162(2), 139-145. [DOI:10.1016/j.cbpa.2011.07.004] [PMID]
4. Corrêa, L. L., Souza, G. T., Takemoto, R. M., Ceccarelli, P. S. and Adriano, E. A., 2014. Behavioral changes caused by Austrodiplostomum spp. in Hoplias malabaricus from the São Francisco River, Brazil. Parasitology research, 113(2), 499-503. [DOI:10.1007/s00436-013-3679-6] [PMID]
5. Correia, J. P., Graça, J. T. and Hirofumi, M., 2008. Long‐term transportation, by road and air, of Devil‐ray (Mobula mobular), Meagre (Argyrosomus regius), and Ocean Sunfish (Mola mola). Zoo Biology, 27(3), 234-250. [DOI:10.1002/zoo.20178] [PMID]
6. de Abreu, J. S., Sanabria-Ochoa, A. I., Gonçalves, F. D. and Urbinati, E. C., 2008. Stress responses of juvenile matrinxã (Brycon amazonicus) after transport in a closed system under different loading densities. Ciencia Rural, 38(5), 1413-1417. [DOI:10.1590/S0103-84782008000500034]
7. Dobšíková, R., Svobodova, Z., Blahova, J., Modra, H. and Velíšek, J., 2009. The effect of transport on biochemical and haematological indices of common carp Cyprinus carpio L.). Czech Journal of Animal Science, 54(11), 510-518. [DOI:10.17221/52/2009-CJAS]
8. Foo, J.-N., Liu, J.-J. and Tan, E.-K., 2012. Whole-genome and whole-exome sequencing in neurological diseases. Nature Reviews Neurology, 8(9), 508-517. [DOI:10.1038/nrneurol.2012.148] [PMID]
9. Gomes, L. C., Brinn, R. P., Marcon, J. L., Dantas, L. A., Brandão, F. R., De Abreu, J. S., Lemos, P. E. M., McComb, D. M. and Baldisserotto, B., 2009. Benefits of using the probiotic Efinol® L during transportation of cardinal tetra, Paracheirodon axelrodi (Schultz), in the Amazon. Aquaculture Research, 40(2), 157-165. [DOI:10.1111/j.1365-2109.2008.02077.x]
10. Gomes, L. C., Roubach, R., Araujo‐Lima, C. A., Chippari‐Gomes, A. R., Lopes, N. P. and Urbinati, E. C., 2003. Effect of fish density during transportation on stress and mortality of juvenile tambaqui Colossoma macropomum. Journal of the World Aquaculture society, 34(1), 76-84. [DOI:10.1111/j.1749-7345.2003.tb00041.x]
11. Goos, H. T. and Consten, D., 2002. Stress adaptation, cortisol and pubertal development in the male common carp, Cyprinus carpio. Molecular and Cellular Endocrinology, 197(1-2), 105-116. [DOI:10.1016/S0303-7207(02)00284-8]
12. Harmon, T. S., 2009. Methods for reducing stressors and maintaining water quality associated with live fish transport in tanks: a review of the basics. Reviews in Aquaculture, 1(1), 58-66. [DOI:10.1111/j.1753-5131.2008.01003.x]
13. Henry, R. P., Lucu, C., Onken, H. and Weihrauch, D., 2012. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Frontiers in Physiology, 3, 431. [DOI:10.3389/fphys.2012.00431] [PMID] [PMCID]
14. Herman, J. P., McKlveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., Scheimann, J. and Myers, B., 2011. Regulation of the hypothalamic‐pituitary‐adrenocortical stress response. Comprehensive Physiology, 6(2), 603-621. [DOI:10.1002/cphy.c150015] [PMID] [PMCID]
15. Jittinandana, S., Kenney, P., Mazik, P., Danley, M., Nelson, C., Kiser, R. and Hankins, J., 2005. Transport and stunning affect quality of Arctic char fillets. Journal of Muscle Foods, 16(3), 274-288. [DOI:10.1111/j.1745-4573.2005.09304.x]
16. Kalamarz-Kubiak, H., 2018. Cortisol in Correlation to Other Indicators of Fish Welfare. Edited by Ali Gamal Al-kaf, 155. [DOI:10.5772/intechopen.72392] [PMID]
17. Marçalo, A., Pousão Ferreira, P., Mateus, L., Duarte Correia, J. and Stratoudakis, Y., 2008. Sardine early survival, physical condition and stress after introduction to captivity. Journal of Fish Biology, 72(1), 103-120. [DOI:10.1111/j.1095-8649.2007.01660.x]
18. Meinelt, T., Schreckenbach, K., Pietrock, M., Heidrich, S. and Steinberg, C. E., 2008. Humic substances. Environmental Science and Pollution Research, 15(1), 17. [DOI:10.1065/espr2007.08.448] [PMID]
19. Narra, M. R., Rajender, K., Reddy, R. R., Murty, U. S. and Begum, G., 2017. Insecticides induced stress response and recuperation in fish: biomarkers in blood and tissues related to oxidative damage. Chemosphere, 168, 350-357. [DOI:10.1016/j.chemosphere.2016.10.066] [PMID]
20. Oyoo-Okoth, E., Cherop, L., Ngugi, C. C., Chepkirui-Boit, V., Manguya-Lusega, D., Ani-Sabwa, J. and Charo-Karisa, H., 2011. Survival and physiological response of Labeo victorianus (Pisces: Cyprinidae, Boulenger 1901) juveniles to transport stress under a salinity gradient. Aquaculture, 319(1-2), 226-231. [DOI:10.1016/j.aquaculture.2011.06.052]
21. Pan, C. H., Chien, Y. H. and Wang, Y. J., 2010. The antioxidant capacity response to hypoxia stress during transportation of characins (Hyphessobrycon callistus Boulenger) fed diets supplemented with carotenoids. Aquaculture Research, 41(7), 973-981. [DOI:10.1111/j.1365-2109.2009.02380.x]
22. Pankhurst, N., 2011. The endocrinology of stress in fish: an environmental perspective. General and comparative endocrinology, 170(2), 265-275. [DOI:10.1016/j.ygcen.2010.07.017] [PMID]
23. Peter, M. S. and Simi, S., 2017. Hypoxia Stress Modifies Na+/K+-ATPase, H+/K+-ATPase, Na+/NH 4+-ATPase, and nkaα1 Isoform Expression in the Brain of Immune-Challenged Air-Breathing Fish. Journal of Experimental Neuroscience, 11, 1-18. [DOI:10.1177/1179069517733732] [PMID] [PMCID]
24. Reglero, P., Balbín, R., Ortega, A., Alvarez-Berastegui, D., Gordoa, A., Torres, A. P., Moltó, V., Pascual, A., De La Gándara, F. and Alemany, F., 2013. First attempt to assess the viability of bluefin tuna spawning events in offshore cages located in an a priori favourable larval habitat. Scientia Marina, 77(4), 585-594. [DOI:10.3989/scimar.03759.28A]
25. Ruane, N. M., Carballo, E. C. and Komen, J., 2002. Increased stocking density influences the acute physiological stress response of common carp Cyprinus carpio (L.). Aquaculture Research, 33(10), 777-784. [DOI:10.1046/j.1365-2109.2002.00717.x]
26. Sampaio, F. D. and Freire, C. A., 2016. An overview of stress physiology of fish transport: changes in water quality as a function of transport duration. Fish and Fisheries, 17(4), 1055-1072. [DOI:10.1111/faf.12158]
27. Sarvi, K., Niksirat, H., Amiri, B. M., Mirtorabi, S., Rafiee, G. and Bakhtiyari, M., 2006. Cryopreservation of semen from the endangered Caspian brown trout (Salmo trutta caspius). Aquaculture, 256(1-4), 564-569. [DOI:10.1016/j.aquaculture.2006.02.012]
28. Stankevičiūtė, M., Sauliutė, G., Makaras, T., Markuckas, A., Virbickas, T. and Baršienė, J., 2018. Responses of biomarkers in Atlantic salmon (Salmo salar) following exposure to environmentally relevant concentrations of complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd). Part II. Ecotoxicology, 27(8), 1069-1086. [DOI:10.1007/s10646-018-1960-2] [PMID]
29. Stieglitz, J. D., Benetti, D. D. and Serafy, J. E., 2012. Optimizing transport of live juvenile cobia (Rachycentron canadum): effects of salinity and shipping biomass. Aquaculture, 364, 293-297. [DOI:10.1016/j.aquaculture.2012.08.038]
30. Tacchi, L., Lowrey, L., Musharrafieh, R., Crossey, K., Larragoite, E. T. and Salinas, I., 2015. Effects of transportation stress and addition of salt to transport water on the skin mucosal homeostasis of rainbow trout (Oncorhynchus mykiss). Aquaculture, 435, 120-127. [DOI:10.1016/j.aquaculture.2014.09.027] [PMID] [PMCID]
31. Urbinati, E. C., de Abreu, J. S., da Silva Camargo, A. C. and Parra, M. A. L., 2004. Loading and transport stress of juvenile matrinxã (Brycon cephalus, Characidae) at various densities. Aquaculture, 229(1-4), 389-400. [DOI:10.1016/S0044-8486(03)00350-8]
32. Wright, K., Woods, C., Gray, B. and Lokman, P., 2007. Recovery from acute, chronic and transport stress in the pot‐bellied seahorse Hippocampus abdominalis. Journal of Fish Biology, 70(5), 1447-1457. [DOI:10.1111/j.1095-8649.2007.01422.x]
33. Wu, H., Aoki, A., Arimoto, T., Nakano, T., Ohnuki, H., Murata, M., Ren, H. and Endo, H., 2015. Fish stress become visible: A new attempt to use biosensor for real-time monitoring fish stress. Biosensors and Bioelectronics, 67, 503-510. [DOI:10.1016/j.bios.2014.09.015] [PMID]



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 1 (2020) Back to browse issues page