[صفحه اصلی ]   [Archive]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 4، شماره 1 - ( 11-1396 ) ::
جلد 4 شماره 1 صفحات 82-94 برگشت به فهرست نسخه ها
Effects of dietary prebiotic Mito (MHF-Y) and starvation on the compensatory growth, survival, and hematological parameters in Common carp (Cyprinus carpio L, 1758)
معصومه بحرکاظمی ، مهدیسا اسدی
چکیده:   (182 مشاهده)
In order to study the effect of prebiotic Mito on compensatory growth following one week starvation in common carp, the fish (4.5 ± 0.05 g) were examined for 60 days in three treatments. A control fed with non-prebiotic diet with no starvation (T1), a 2nd group starved for one week then fed 0.2% of prebiotic (T2)  and 3rd group received no prebiotic diet after one week starvation. The highest percent of weight gain and specific growth rate and condition factor were obtained in the control followed by T2 with significant differences (P<0.05). The lowest amount of food conversion ratio and the highest amount of protein efficiency ratio were recorded in T1, too. The mortality rate was zero in all treatments. The number of red blood cells showed insignificant differences between the control and the other groups (P> 0.05). Hemoglobin and hematocrit values significantly differed between T1 and two other treatments. T2 contained the highest number of white blood cells and lymphocyte while the percent of basophil, eosinophil and monocyte did not differ between treatments significantly (P> 0.05). So, although the use of 0.2% prebiotic largely caused compensatory growth in carp but was not so sufficient that exceed those of the control group. However, the addition of prebiotic Mito significantly elevated hematological status of the fish.
متن کامل [PDF 371 kb]   (58 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Aquaculture and Health management
دریافت: ۱۳۹۶/۸/۱۳ | پذیرش: ۱۳۹۷/۲/۲۵ | انتشار: ۱۳۹۷/۷/۲۹
فهرست منابع
1. Abolfathi M., Hajiimoradloo A., Ghorbani R. & Zamani A. (2012) Effect of Starvation and re-feeding on digestive enzyme activities in juvenile roach Rutilus rutilus caspius. Comparative Biochemistry and Physiology 161(2), 166-173. [DOI:10.1016/j.cbpa.2011.10.020]
2. Ahmadifar E., Jalali M. A., Sudagar M., Azari Takami Gh. & Mohammadi Zarajabad A. (2009) Effects of Aquavac Ergosan on growth performance, survival and haematological factors in beluga (Huso huso) juvenile. Gorgan Journal of Agriculture and Natural Resources 16, 72-80. [In Persian]
3. Ai Q., Mai K., Tan B., Xu W., Duan Q., Ma H. & Zhang L. (2006) Replacement of fish meal by meat and bone meal in diets for large Yellow croaker (Pseudosciaena crocea). Aquaculture 260, 255-263. [DOI:10.1016/j.aquaculture.2006.06.043]
4. Akrami R., Ghelichi A. & Zareie A. (2011) The effects of inulin as a prebiotic supplement on growth, survival, density of intestinal lactic acid bacteria, and carcass composition of fry common carp (Cyprinus carpio). Fisheries Journal 4, 87-94. [In Persian]
5. Akrami R., Razeghi-Mansour M., Chitsaz H., Ziaee R. & Ahmadi Z. (2012) Effect of dietary mannan oligosaccharide on growth performance, survival, body composition and some hematological parameters of carp juvenile (Cyprinus carpio). Journal of Animal Science Advances 2(11), 879-885.
6. Ali M., Nicieza A. & Wootton R. J. (2003) Compensatory growth in fishes: a response to growth depression. Fish and Fisheries 4(2), 147–190. [DOI:10.1046/j.1467-2979.2003.00120.x]
7. Andrews S. R., Sahu N.P., Pal A.K. & Kumar S. (2009) Hematological modulation and growth of Labeo rohita fingerlings: effect of dietary mannan oligosaccharide, yeast extract, protein hydrolysate and chlorella. Journal of Aquaculture Research 41(1), 61–69. [DOI:10.1111/j.1365-2109.2009.02304.x]
8. Assareh R., Mohammad Nejad M., Faghani h. & Karbakhsh A. (2012) The effects of starvation and re-feeding on growth and swimming performance of juvenile black carp (Mylopharyngodon piceus). Journal of Research in Biology 2(5), 418-423.
9. Blaxhall P.C., Daisley K.W. (1973) Routine hematological methods for use with fish bloods. Journal of Fish Biology 5(6), 771-781. [DOI:10.1111/j.1095-8649.1973.tb04510.x]
10. De Schrijver R. & Ollevier F. (2000) Protein digestion in juvenile turbot (Scophtalmus maximus) and effects of dietary administration of Vibrio proteolyticus. Aquaculture 186, 107-116. [DOI:10.1016/S0044-8486(99)00372-5]
11. Del Rio-Zaragoza O. B., Fajer-Avila E. J. & Almazan-Rueda P. (2011) Influence of β-glucan on innate immunity and resistance of Lutjanus guttatus to an experimental infection of dactylogyrid monogeneans. Parasite Immunology 33(9), 483-494. [DOI:10.1111/j.1365-3024.2011.01309.x]
12. Dimitroglou A. D., Merrifield L., Moate R., Davies S. J., Spring P., Sweetman J. & Bradley G. (2009) Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss. American Society of Animal Science 87(10), 3226–3234.
13. Eslamloo Kh, Azodi M. & Morshedi V. (2012) The study of growth amount of Barbonymus schwanenfeldii after starvation and re-feeding. Iranian Journal of Natural Sciences 66(4), 519-524. [In Persian]
14. Genc, M.A., Aktas, M., Genc, E. & Yilmaz, E. 2007. Effects of dietary mannan oligosaccharide on growth, body composition and hepatopancreas histology of Penaeus semisulcatus (de Haan 1844). Aquaculture Nutrition 13(2), 156-161. [DOI:10.1111/j.1365-2095.2007.00469.x]
15. Hanley F., Brown H. & Carbery J. (1995) First observations on the Effects of mannan oligosaccharide added to hatchery diets for warm water hybrid red Tilapia. In: 11th Annual Symposium on Biotechnology in the Feed Industry, Lexington, KY, USA.
16. Hayward R. S., Noltie D. B. & Wang N. (1997) Use of compensatory growth to double hybrid sunfish growth rates. Transactions of the American Fisheries Society 126(2), 316-322. https://doi.org/10.1577/1548-8659(1997)126<0316:NUOCGT>2.3.CO;2 [DOI:10.1577/1548-8659(1997)1262.3.CO;2]
17. Heide A., Foss A., Stefansson S. O., Mayer I., Norberg B., Roth B., Jenssen M. D., Nortvdt R. & Imsland A. K. (2006) Compensatory growth and fillet crude composition in juvenile Atlantic halibut: Effects of short term starvation periods and subsequent feeding. Aquaculture 261(1), 109–117. [DOI:10.1016/j.aquaculture.2006.06.050]
18. Helland S. J., Grisdale B. & Nerland S. (1996) A simple method for the measurement of daily feed intake of groups of fish in tanks. Aquaculture 139, 157-163. [DOI:10.1016/0044-8486(95)01145-5]
19. Hoseinifar S. H., Mirvaghefi A. R., Mojazi Amiri B., Khoshbavar Rostami H. A., Poor Amini M. & Darvish Bastami K. (2011) The probiotic effects of dietary inactive yeast Saccharomyces cerevisiae var. ellipsoideus on growth factors, survival, body composition and intestinal microbiota of Beluga juvenile (Huso huso). Iranian Journal of Fisheries Science 19(4), 55-66.
20. Jobling M., Meloy O. H., Santos J. & Christiansen B. (1994) The compensatory growth response of the Atlantic cod: effects of nutritional history. Aquaculture International 2(2), 75-90. [DOI:10.1007/BF00128802]
21. Kondera E., Kosciuszko A., Dmowska A. & Witeska M. (2017) Haematological and haematopoietic effects of feeding different diets and starvation in common carp Cyprinus carpio. Journal of Animal Research 45(1), 623-628.
22. Mazurkiewicz J., Przybyl A. & Golski J. (2008) Usability of Fermacto prebiotic in feeds for common carp (Cyprinus carpio L.) fry. Nauka Przyroda Technology 3, 15- 21.
23. Nikbakhsh J. & Bahrekazemi M. (2017) Effect of diets containing different levels of prebiotic Mito on growth factors, survival, body composition, and hematological parameters in common carp (Cyprinus carpio). Journal of Marine Biology and Aquaculture 3(1), 1-6.
24. Pang X., Fu SJ., Li XM. & Zhang YG. (2016) The effects of starvation and re-feeding on growth and swimming performance of juvenile black carp (Mylopharyngodon piceus). Fish Physiology and Biochemistry 42(4), 1203-1212. [DOI:10.1007/s10695-016-0210-x]
25. Prabhakar S.K., Sardar P. & Dos R.C. (2008) Effect of starvation with subsequent realimention with respect to compensatory growth of Indian Major carp, Rohu. Animal Nutrition and Feed Technology 8(1), 89-96.
26. Razeghi Mansour M., Akrami R., Ghobadi Sh., Amani Denji K., Ezatrahimi N. & Gharaei A. (2012) Effect of dietary mannan oligosaccharide (MOS) on growth performance, survival, body composition, and some hematological parameters in giant sturgeon juvenile (Huso huso Linnaeus, 1754). Journal of Fish Physiology and Biochemistry 38, 829–835. [DOI:10.1007/s10695-011-9570-4]
27. Rehulka J., Minarik B., Cink D. & Zalak J. (2011) Prebiotic effect of fructo oligosaccharide on growth and physiological state of rainbow trout (Oncorhynchus mykiss). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 5, 227-235. [DOI:10.11118/actaun201159050227]
28. Sado R. J., Bicudo A. J. & Cyrino J. E. (2008) Feeding dietary mannan oligosaccharid to juvenile nile tilapia (Oreochromis niloticus), has no effect on hematological parameters and showed decreased feed consumption. Journal of World Aquaculture Society 39(6), 821-826. [DOI:10.1111/j.1749-7345.2008.00219.x]
29. Stoskopf M. K. (1993) In: Fish Medicine. Edited by M. K. Stoskopf. Saunders, Philadelphia, pp: 113-131.
30. Taheri H. & Aliasghari M. (2012) Effect of starvation and compensatory growth on growth and carcass composition in Caspian roach fry. Journal of Exploitation and Aquaculture 1, 81 - 92.
31. Torfi Mozanzadeh M., MarammazI J., YaghoubI M., Yavari V., Agh N. & Gisbert E. (2017) Somatic and physiological responses to cyclic fasting and refeeding periods in sobaity sea bream (Sparidentex hasta, Valenciennes 1830). Aquaculture Nutrition 23(1), 181-191. [DOI:10.1111/anu.12379]
32. Tovar D, Zambonino J., Cahu C., Gatesoupe, F.J., Vázquez-Juárez, R. & Lésel, R. (2002) Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) Larvae. Aquaculture 204(1-2), 113-123. [DOI:10.1016/S0044-8486(01)00650-0]
33. Türkmen S., Eroldoğan O. T., Yılmaz H. A., Ölçülü A., Inan G. A. K., Erçen Z. & Tekelioğlu N. (2012) Compensatory growth response of European sea bass (Dicentrarchus labrax L.) under cycled starvation and restricted feeding rate. Aquaculture Research 43, 1643-1650. [DOI:10.1111/j.1365-2109.2011.02970.x]
34. Welker T. L., Lim C., Yildirim-Aksoy M., Shelby R. & Klesius P. H. (2007) Immune response and resistance to stress and Edwardsiella ictaluri, fed diets containing commercial whole-cell yeast or yeast subcomponents. Journal of World Aquaculture Society 38(1), 24–35. [DOI:10.1111/j.1749-7345.2006.00070.x]
35. Wieser W., Krumschnalbel G. & Ojwang-Okwor J. P. (1992) The energetics of starvation and growth after refeeding in juveniles of three cyprinid species. Environmental Biology of Fishes 33, 63–71. [DOI:10.1007/BF00002554]
36. Xie S., Zhu X., Cui Y., Wootton R. J., Lei W. & Yang Y. (2001) Compensatory growth in the gibel carp following feed deprivation: temporal patterns in growth, nutrient deposition, feed intake and body composition. Journal of Fish Biology 58(4), 999–1009. [DOI:10.1111/j.1095-8649.2001.tb00550.x]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahrekazemi M, Asadi M. Effects of dietary prebiotic Mito (MHF-Y) and starvation on the compensatory growth, survival, and hematological parameters in Common carp (Cyprinus carpio L, 1758). I. j. Aqua. Anim. Health. 2018; 4 (1) :82-94
URL: http://ijaah.ir/article-1-153-fa.html

بحرکاظمی معصومه، اسدی مهدیسا. Effects of dietary prebiotic Mito (MHF-Y) and starvation on the compensatory growth, survival, and hematological parameters in Common carp (Cyprinus carpio L, 1758). نشریه ایرانی سلامت حیوانات آبزی. 1396; 4 (1) :82-94

URL: http://ijaah.ir/article-1-153-fa.html



دوره 4، شماره 1 - ( 11-1396 ) برگشت به فهرست نسخه ها
Persian site map - English site map - Created in 0.06 seconds with 30 queries by YEKTAWEB 3790