:: Volume 3, Issue 2 (2017) ::
Sustainable Aquaculture. Health. Management. J. 2017, 3(2): 36-52 Back to browse issues page
Histopathological changes in various tissues of striped catfish, Pangasianodon hypophthalmus, fed on dietary nucleotides and exposed to water-borne silver nanoparticles or silver nitrate
B Pournori , F Paykan Heyrati * , S Dorafshan
Abstract:   (7146 Views)

The objective of this paper focused on the ffects of dietary nucleotides (NT) on histopathological alternations of striped catfish Pangasianodon hypophthalmus, after exposure to water-borne silver nanoparticles (AgNPs) and silver nitrate (AgNO3). Fish were fed with a diet containing nucleotide (0.75%) or control diet for 10 weeks and then divided into 3 experiments including control, 20 µg L-1 of AgNPs or AgNO3 for 10 days. At the end, histopathological changes in gill, liver and kidney were evaluated using haematoxylin-eosin technique. Water-borne AgNPs or AgNO3 caused some distinctive histopathological alterations in both feeding group. The most important damages were observed in epithelial cell hyperplasia, inflammation and necrotic epithelial cell in the gills, pigmentation, fiber cells and cytoplasmic vacuolization of hepatocytes in the liver and visualization of red blood cells and eosinophils, glomerular and tubular necrosis in the kidney. Based on organ index (Iorg), the highest damages were observed in the tissues of the fish fed on the control diet and exposed to 20 µg L-1 of AgNPs. No significant differences were observed in histopathological alterations between two feeding groups when compare the same organs with similar pollutant (kind and concentration). It could be concluded that dietary NT could not improve the fish ability against water-borne AgNPs or AgNO3.  

Keywords: Nanotechnology, Gills, Kidney, Liver, Organ index, Food supplement.
Full-Text [PDF 1169 kb]   (2586 Downloads)    
Type of Study: Original research papers | Subject: Toxicology and polution
Received: 2017/04/9 | Accepted: 2017/08/31 | Published: 2017/08/31
References
1. Abedian Kenari A., Mahmoudi N., Soltani M. & Abedian Kenari S. (2012) Dietary nucleotide supplements influence the growth haemato-immunological parameters and stress responses in endangered Caspian brown trout (Salmo trutta caspius Kessler, 1877). Aquaculture Nutrition 938, 1365-2095.
2. Adamek Z., Hamackova J., Kouril J., Vachta R. & Stibranyiova I. (1996) Effect of Ascogen probiotics supplementation on farming success in rainbow trout (Oncorhynchus mykiss) and wells (Silurus glanis) under conditions of intensive culture. Krmiva (Zagreb) 38, 11-20.
3. Al-Bairuty G.A., Shaw B.J., Handy R.D. & Henry T.B. (2013) Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology 126, 104-115. [DOI:10.1016/j.aquatox.2012.10.005]
4. Aruoja V., Dubourguier H.C., Kasemets K. & Kahru A. (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae (Pseudokirchneriella subcapitata). Science of the Total Environment 407, 1461-1468. [DOI:10.1016/j.scitotenv.2008.10.053]
5. Bahrami Babaheydari S., Dorafshan S., Paykan Heyrati F. & Mahboobi Soofiani N. (2014a). Effect of wood betony (Stachys lavandulifolia Vahl) extract on some serum biochemical changes and acute stress response in juvenile common carp (Cyprinus carpio). Iranian Journal of Aquatic Animal Health 1(1), 17-26.
6. Bahrami Babaheydari S., Dorafshan S., Paykan Heyrati F., Mahboobi Soofiani N. & Vahabi M.R. (2014b). The physiological changes, growth performance and whole body composition of common carp, Cyprinus carpio fed on diet containing wood betony, Stachys lavandulifolia extract. Journal of Agricultural Science & Technology 16, 1565-1574.
7. Bahrami Babaheydari S., Paykan Heyrati F., Dorafshan S., Mahboobi Soofiani N. & Vahabi M.R. (2015). Effect of dietary wood betony, Stachys lavandulifolia extract on growth performance, haematological and biochemical parameters of Common carp, Cyprinus carpio. Iranian Journal of Fisheries Sciences 14(4): 805-817.
8. Barros M.M., Giumaraes I.G., Pezzato L.E., Orsi R.O.D., Junior A.C.F., Teixeira C.P., Fleuri L.F. & Padovani C.R. (2013) The effect of dietary nucleotide mixture on growth performance, hematological and immunological parameters of Nile tilapia (Oreochromis niloticus). Aquaculture Research 10, 1-7.
9. Bernet D., Schmidt H., Meier W., Burkhardt-Holm P. & Wahli T. (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases 22, 25-34. [DOI:10.1046/j.1365-2761.1999.00134.x]
10. Blaise C., Gagne F., Ferard J.F. & Eullaffroy P. (2008) Ecotoxicity of selected nanomaterials to aquatic organisms. Environmental Toxicology 23, 591-598. [DOI:10.1002/tox.20402]
11. Burrells C., William P.D., Southage P.J. & Wadsworth S.L. (2001) Dietary nucleotides: a novel supplement in fish feeds 2. Effects on vaccination, salt water transfer, growth rate and physiology of Atlantic salmon. Aquaculture 199, 171-184. [DOI:10.1016/S0044-8486(01)00576-2]
12. Choi O., Deng K.K., Kim N.J., Ross L., Jr Surampalli R.Y. & Hu Z. (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research 42, 3066-3074. [DOI:10.1016/j.watres.2008.02.021]
13. Geho D.H. Jones C.D. Petricoin E.F. Liotta L.A. (2006) Nanoparticles potential biomarker harvesters. Current Opinion in Chemical Biology 10, 56-61. [DOI:10.1016/j.cbpa.2006.01.003]
14. Glencross B.D. & Rutherford N.R. (2010) Dietary strategies to improve the growth and feed utilization of Barramundi (Lates calcaifer) under high water temperature conditions. Aquaculture Nutrition 16, 343-350. [DOI:10.1111/j.1365-2095.2009.00670.x]
15. Gonzalez-Vecino J.L., Cutts C.J., Batty R.S., Mazorra C. & Burrells C. (2003) The effects of nucleotide supplementation on broodstock and larval performance in Atlantic halibut, Hippoglossus hippoglossus L. and haddock, Melanogrammus aeglefinus L. In: World Aquaculture 2003 Abstracts. World Aquaculture Society, Baton Rouge, Louisiana, USA p, 325.
16. Jayesh P., Chatterjeec A.K., Duttaguptab S.P. & Mukherji S. (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia 4, 707-716. [DOI:10.1016/j.actbio.2007.11.006]
17. Katuli K.K., Massarsky A., Hadadi A. & Pourmehran Z. (2014) Silver nanoparticles inhibit the gill Na+/K+-ATPase and erythrocyte AChE activities and induce the stress response in adult zebrafish (Danio rerio). Ecotoxicology and Environmental Safety 106, 173-180. [DOI:10.1016/j.ecoenv.2014.04.001]
18. Li P. & Gatlin D.M. (2006) Nucleotide nutrition in fish: current knowledge and future applications. Aquaculture 251, 141-152. [DOI:10.1016/j.aquaculture.2005.01.009]
19. Li P. & Gatlin D.M. III (2007) Dietary supplementation of a purified nucleotide mixture transiently enhanced growth and feed utilization of juvenile red drum, Sciaenops ocellatus. Journal of the World Aquaculture Society 38, 281–286. [DOI:10.1111/j.1749-7345.2007.00096.x]
20. Matsuo K. & Miyazano I. (1993) The influence of long-term administration of peptidoglycan on diseases resistance and growth of juvenile rainbow trout (Oncorhynchus mykiss). Nippon Suisan Gakkaishi 59, 1377-1379. [DOI:10.2331/suisan.59.1377]
21. Pournori B., Dorafshan S. & Paykan Heyrati (2017) Bioaccumulation of water-borne silver nanoparticles and silver nitrate in striped catfish, Pangasianodon hypophthalmus, fed dietary nucleotides. Iranian Journal of Ichthyology 4 (1), 31-40.
22. Raki M., Paykan Heyrati F. & Dorafshan S. (2015) Effect of colloidal silver nanoparticles and silver nitrate on hematological indices of Zayandehrud Chub (Petroleuciscus esfahani). Journal of Aquatic Ecology 5 (3), 114-123 (In Presian).
23. Razmara P., Paykan Heyrati F. & Dorafshan S. (2014a) Effects of silver nanoparticles on some haematological indices of rainbow catfish, Pangasius hypophthalmus. Journal of Cell and Tissue 5, 263-272 (In Persian).
24. Razmara P., Dorafshan S., Paykan Heyrati F., Talebi M. & Ranjbar M. (2014b) Effect of water-born colloidal silver nanoparticles and silver nitrate on gill histopathology of Rainbow catfish, Pangasianodon hypophthalmus. Journal of Aquatic Ecology 3, 10-18 (In Persian).
25. Salari Joo H., Kalbassi M.R., Yu I.J., Lee J.H. & Johari S.A. (2013) Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity. Aquatic Toxicology 140, 396-408. [DOI:10.1016/j.aquatox.2013.07.003]
26. Scown T.M., Santos E.M., Johnston B.D., Gaiser B., Baalousha M., Mitov S., Lead J.R., Stone V., Fernandes T.F., Jepson M., Aerle R.V. & Tyler C.R. (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout (Oncorhynchus mykiss). Toxicological Science 115, 521-534. [DOI:10.1093/toxsci/kfq076]
27. Shaw B.J. & Handy R.D. (2011) Physiological effects of nanoparticles on fish: A comparison of nanometals versus metal ions. Environment International 37, 1083-1097. [DOI:10.1016/j.envint.2011.03.009]
28. Tahmasebi Kohyani A. Keyvan Shokooh S. Nematollahi A. Mahmoudi N. Pasa-zanoosi H. (2012) Effect of dietary nucleotides supplementation on rainbow trout (Oncorhynchus mykiss) performance and acute stress response. Fish Physiology and Biochemistry 38, 431-440. [DOI:10.1007/s10695-011-9524-x]
29. Volker C., Kamoken I., Boedicker C. & Oetken C. (2015) Toxicity of silver nanoparticles and ionic silver: Comparison of adverse effects and potential toxicity mechanisms in the freshwater clam (Sphaerium corneum). Nanotoxicology 9(6), 677-685. [DOI:10.3109/17435390.2014.963723]
30. Xiong D., Fang T., Yu L., Sima X. & Zhu W. (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish (Danio rerio): Acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment 409, 1444-1452. [DOI:10.1016/j.scitotenv.2011.01.015]
31. Yaghobi M., Dorafshan S., Paykan Heyrati F. & Mahmoudi N. (2014a). Growth performance and some haematological parameters of ornamental striped catfish (Pangasianodon hypophthalmus) fed on dietary nucleotide. Iranian Journal of Veterinary Research 15(3), 262-265.
32. Yaghobi M., Paykan Heyrati F., Akhlaghi M., Dorafshan S. & Mahmoudi N. (2014b). Intestinal microbiota of striped catfish, Pangasianodon hypophthalmus (Sauvage, 1878) fed on dietary nucleotide. Iranian Journal of Ichthyology 1 (4), 274-280.
33. Yaghobi M., Paykan Heyrati F., Dorafshan S. & Mahmoudi N. (2015a) Serum biochemical changes and acute stress responses of the endangered iridescent catfish, Pangasianodon hypophthalmus supplied with dietary nucleotide. Journal of Agriculture Science and Technology 17, 1161-1170.
34. Yaghobi M., Dorafshan S., Akhlaghi M., Paykan Heyrati F. & Mahmoudi N. (2015b) Immune responses and intestinal morphology of striped catfish, Pangasianodon hypophthalmus (Sauvage, 1878), fed dietary nucleotides. Journal of Applied Ichthyology 31, 83-87. [DOI:10.1111/jai.12489]
35. Ydollahi M., Ahari H. & Anvar A.A. (2016) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus. African Journal of Microbiology Research 10 (23), 850-855. [DOI:10.5897/AJMR2016.7908]
36. Yousefi M., Abtahi B. & Abedian Kenari A. (2012) Hematological, serum biochemical parameters, and physiological responses to acute stress of Beluga sturgeon (Huso huso, Linnaeus 1785) juveniles fed dietary nucleotide. Comparative Clinical Pathology 21, 1043-1048. [DOI:10.1007/s00580-011-1225-4]
37. Yuan W. & Zhou Q. (2013) Silver nanoparticles cause oxidative damage and histological changes in Medaka (Oryzias latipes) after 14 days of exposure. Environmental Toxicology and Chemistry 32, 165-173. [DOI:10.1002/etc.2038]



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 3, Issue 2 (2017) Back to browse issues page