:: Volume 3, Issue 2 (2017) ::
Sustainable Aquaculture. Health. Management. J. 2017, 3(2): 11-21 Back to browse issues page
Effects of salinity and plasma prolactin on chloride cells in the gill of Chalcalburnus chalcoides
N Neurasteh , M Setorki , A Tehranifard , A Moshfegh *
Abstract:   (4933 Views)

Gill chloride cells and prolactin hormone are of high importance in the adaptation of euryhaline fish. Guldenstati (Chalcalburnus chalcoides, 1772), an adromous fish, migrates from the Caspian Sea to rivers to have a more successful reproduction. The present study was aimed to evaluate the changes in the number and size of C. chalcoides gill chloride cells as well as to determine the relationship of its plasma prolactin with water salinity. Eighty-four individual C. chalcoides were collected from river (Lale Roud; 0.4 ppt), Lale Roud estuary (3.75 ppt), and Caspian Sea (9.71 ppt). The sampling was lasted for a-12 month period in 2014. The highest (1349±152) and lowest (881±37) number of gill chloride cells were observed in the animals collected from the Caspian Sea and in the river (Lale Roud), respectively. However, plasma prolactin demonstrated the highest level in C. chalcoides caught from the river (0.89±0.02 ng ml-1), but the lowest amount (0.70±0.03 ng ml-1) in the ones collected from the Caspian Sea. Overall, these results suggest that C. chalcoides migration across its habitats is an energy consuming ecological behavior, and the fish consumes high energy just after breeding and while returning to the Caspian Sea.
 

Keywords: Salinity, Chloride cells, Prolactin, Chalcalburnus chalcoides.
Full-Text [PDF 924 kb]   (2288 Downloads)    
Type of Study: Original research papers | Subject: Histopathology
Received: 2017/02/26 | Accepted: 2017/07/31 | Published: 2017/08/13
References
1. Ataimehr, B., Mojazi, A.B., Mirvaghefi, A., Nezami, S. & Riazi, G. (2010) Effect of different salinity on ions, osmolarity, water concentration of body tissue, gill chloride cells and mortality percentage of juveniles of Caspian roach (Rutilus frisii kutum Kamensky, 1901). Iranian Scientific Fisheries Journal, 19, 115 - 130. (In Persian).
2. Azizi, S., Kochanian, P., Peyghan, R., Khansari, A. & Bastami, K.D. (2011) Chloride cell morphometrics of common carp, Cyprinus carpio, in response to different salinities. Comparative Clinical Pathology, 20, 363-367. [DOI:10.1007/s00580-010-1003-8]
3. Bagherian, A. & Rahmani, H. (2009) Morphological discrimination between two populations of shemaya, Chalcalburnus chalcoides (Actinopterygii, Cyprinidae), using a truss network. Animal Biodiversity and Conservation, 32, 1-8.
4. Bayly, I. (1972) Salinity tolerance and osmotic behavior of animals in athalassic saline and marine hypersaline waters. Annual review of ecology and systematics, 3, 233-268. [DOI:10.1146/annurev.es.03.110172.001313]
5. Bonga, S.W. (1997) The stress response in fish. Physiological reviews, 77, 591-625. [DOI:10.1152/physrev.1997.77.3.591]
6. Bradshaw, D. & Mccormick, S. (2006) Hormonal control of salt and water balance in vertebrates—A symposium. In. Academic Press.
7. Charoenphandhu, N., Limlomwongse, L. & Krishnamra, N. (2006) Prolactin directly enhanced Na + / K + - and Ca2 + - ATPase activities in the duodenum of female rats. Canadian journal of physiology and pharmacology, 84, 555-563. [DOI:10.1139/y05-161]
8. Coad, B.W. (1996) Systematics of the shah mahi, Chalcalburnus chalcoides (Güldenstädt, 1772), in the southern Caspian Sea basin (Actinopterygii: Cyprinidae). Zoology in the Middle East, 12, 65-70. [DOI:10.1080/09397140.1996.10637690]
9. Di Giulio, R.T. & Hinton, D.E. (2008) The toxicology of fishes, Crc Press. [DOI:10.1201/9780203647295]
10. Haruta, K., Yamashita, T. & Kawashima, S. (1991) Changes in arginine vasotocin content in the pituitary of the medaka (Oryzia latipes) during osmotic stress. General and comparative endocrinology, 83, 327-336. [DOI:10.1016/0016-6480(91)90137-U]
11. Herndon, T.M., Mccormick, S.D. & Bern, H.A. (1991) Effects of prolactin on chloride cells in opercular membrane of seawater-adapted tilapia. General and comparative endocrinology, 83, 283-289. [DOI:10.1016/0016-6480(91)90032-2]
12. Jabbarzadeh, S., Abtahi, B., Mojazi, B. & Nazari, R. (2000) Study on the changes of some physiological factors during osmoregulation of juvenile Persian sturgeons (Acipenser persicus). Iranian Journal Of Fisheries Sciences, 3, 55-63. (In Persian).
13. Karnaky, K.J., Ernst, S.A. & Philpott, C.W. (1976) Teleost chloride cell. I. Response of pupfish Cyprinodon variegatus gill Na, K-ATPase and chloride cell fine structure to various high salinity environments. The Journal of cell biology, 70, 144-156. [DOI:10.1083/jcb.70.1.144]
14. Katoh, F., Hyodo, S. & Kaneko, T. (2003) Vacuolar-type proton pump in the basolateral plasma membrane energizes ion uptake in branchial mitochondria-rich cells of killi fish Fundulus heteroclitus, adapted to a low ion environment. Journal of Experimental Biology, 206, 793-803. [DOI:10.1242/jeb.00159]
15. Keivany, Y., Nasri, M., Abbasi, K., Abdoli, A. (2016) Atlas of inland water fishes of Iran. Iran Department of Environment Press. 218 p. (In Persian).
16. Khalil, N.A., Hashem, A.M., Ibrahim, A.A. & Mousa, M.A. (2012) Effect of Stress During Handling, Seawater Acclimation, Confinement, and Induced Spawning on Plasma Ion Levels and Somatolactin‐Expressing Cells in Mature Female Liza ramada. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 317, 410-424. [DOI:10.1002/jez.1734]
17. Kiabi, B.H., Abdoli, A. & Naderi, M. (1999) Status of the fish fauna in the South Caspian Basin of Iran. Zoology in the Middle East, 18, 57-65. [DOI:10.1080/09397140.1999.10637782]
18. Koohkan, O. (2017) Effects of different levels of salinity on number and size of chloride cells in gill of Benny fingerling (Barbuss harpeyi). Journal of Comparative Pathobiology, 14.
19. Laiz‐Carrión, R., Guerreiro, P.M., Fuentes, J., Canario, A.V., Martín Del Río, M.P. & Mancera, J.M. (2005) Branchial osmoregulatory response to salinity in the gilthead sea bream, Sparus auratus. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 303, 563-576. [DOI:10.1002/jez.a.183]
20. Mancera, J.M. & Mccormick, S.D. (2007) Role of prolactin, growth hormone, insulin-like growth factor I and cortisol in teleost osmoregulation. Fish Osmoregulation, 497-515. [DOI:10.1201/b10994-17]
21. Manzon, L.A. (2002) The role of prolactin in fish osmoregulation: a review. General and comparative endocrinology, 125, 291-310. [DOI:10.1006/gcen.2001.7746]
22. Marshall, W. & Grosell, M. (2006) Ion transport, osmoregulation, and acid-base balance. The physiology of fishes,3, 177-230.
23. Oğuz, A.R. (2013) Environmental regulation of mitochondria-rich cells in Chalcalburnus tarichi (Pallas, 1811) during reproductive migration. Journal of Membrane Biology, 1-6. [DOI:10.1007/s00232-012-9518-3]
24. Pourkhadje, M., Abdi, R., Zolgharnein, H., Hoseinzade Sahaf, H. & Morovvati, H. (2015) Effects of different salinity on number and area of chloride cells in gill of juvenile grouper (Epinephelus coioides). Iranian Scientific Fisheries Journal, 23, 1-10. (In Persian).
25. Prunet, P., Boeuf, G. & Houdebine, L. (1985) Plasma and pituitary prolactin levels in rainbow trout during adaptation to different salinities. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 235, 187-196. [DOI:10.1002/jez.1402350205]
26. Uchida, K. & Kaneko, T. (1996) Enhanced chloride cell turnover in the gills of chum salmon fry in seawater. Zoological science, 13, 655-660. [DOI:10.2108/zsj.13.655]
27. Uchida, K., Kaneko, T., Miyazaki, H., Hasegawa, S. & Hirano, T. (2000) Excellent salinity tolerance of Mozambique tilapia (Oreochromis mossambicus): elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zoological science, 17, 149-160. [DOI:10.2108/zsj.17.149]
28. Wheeler, M.J. & Hutchinson, J.M. (2006) Hormone assays in biological fluids, Springer. [DOI:10.1385/1592599869]
29. Zydlewski, J. & Mccormick, S.D. (2001) Developmental and environmental regulation of chloride cells in young American shad, Alosa sapidissima. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 290, 73-87. [DOI:10.1002/jez.1037]



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 3, Issue 2 (2017) Back to browse issues page