[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 8, Issue 1 (2022) ::
Sustainable Aquaculture. Health. Management. J. 2022, 8(1): 41-60 Back to browse issues page
Research Article: Determination of median lethal concentration (LC50) and histopathological effects of malachite green on Oncorhynchus mykiss
M Heydari, Z Yaghoobi, S Hosseini * , J Mahdavi, A Movahedinia, Z Amini, S Rouzbehani
Abstract:   (283 Views)
The purpose of this study was to determine the lethal concentration (LC50-96 h) of malachite green on rainbow trout and also the histology effects of this substance on the liver, gills and kidney. With increasing concentrations of malachite green, rainbow trout mortality increased during the period of 24 to 96 hours. Twenty four hour lethal concentration (LC50-24 h) of malachite green on O. mykiss is 32.28 mg L-1. Forty eight hour lethal concentration (LC50-48 h) of malachite green is 16.32 mg L-1, and 72-hour lethal concentration (LC50-72 h) of malachite green is 2.52 mg L-1. All lethal concentrations at 72 hours showed a clear reduction compared to 24 and 48 hours. The median lethal concentration of malachite green (LC50-96 h) of rainbow trout was 0.83 mg L-1 during four consecutive days (96 hours). On the other hand, malachite green showed destructive effects on liver, gills and kidney tissue of rainbow trout, and these changes were more intense with increasing concentration of malachite green. Therefore, due to the grading of toxicity is determined by the amount of LC50-96 h and also observing tissue effects exposed to this substance, the malachite green is considered highly toxic to rainbow trout. For this reason, there are always concerns about the possibility of its transmission to consumers or humans; therefore, regarding to this matter that using this substance in the fish farms has been prohibited by Iran Veterinary Organization, it is necessary to remove malachite green from the list of drugs used in fish breeding and provide the other safe drugs.
Keywords: Malachite Green, Median Lethal Concentration, Histopathology, Oncorhynchus mykiss
Full-Text [PDF 2129 kb]   (89 Downloads)    
Type of Study: Original research papers | Subject: Toxicology and polution
Received: 2022/04/11 | Accepted: 2022/08/16 | Published: 2022/08/21
References
1. Aerssens, D., Cadoni, E., Tack, L. and Madder, A., 2022. A Photosensitized Singlet Oxygen (1O2) Toolbox for Bio-Organic Applications: Tailoring 1O2 Generation for DNA and Protein Labelling, Targeting and Biosensing. Molecules, 27(3), p.778. [DOI:10.3390/molecules27030778] [PMID] [PMCID]
2. Ahmadivand, S., Farahmand, H., Mirvaghefi, A.R., Eagderi, S., Shokrpoor, S. and Rahmati-Holasoo, H., 2014. Histopathological and haematological response of male rainbow trout (Oncorhynchus mykiss) subjected to butachlor. Veterinarni Medicina, 59(9). [DOI:10.17221/7683-VETMED]
3. Alaboudi, A.R., 2022. Chemical residues: potential food safety hazards in the Middle East. In Food Safety in the Middle East (pp. 143-186). Academic Press. [DOI:10.1016/B978-0-12-822417-5.00004-0]
4. Alaguprathana, M. and Poonkothai, M., 2021. Haematological, biochemical, enzymological and histological responses of Labeo rohita exposed to methyl orange dye solution treated with Oedogonium subplagiostomum AP1. Environmental Science and Pollution Research, 28(14), 17602-17612. [DOI:10.1007/s11356-020-12208-7] [PMID]
5. Alderman, D.J., 1985. Malachite green: a review. Journal of fish diseases, 8(3), 289-298. [DOI:10.1111/j.1365-2761.1985.tb00945.x]
6. Al-Yousef, H.A., Alotaibi, B. M., Alanazi, M.M., Aouaini, F., Sellaoui, L. and Bonilla-Petriciolet, A., 2021. Theoretical assessment of the adsorption mechanism of ibuprofen, ampicillin, orange G and malachite green on a biomass functionalized with plasma. Journal of Environmental Chemical Engineering, 9(1), p.104950. [DOI:10.1016/j.jece.2020.104950]
7. Anokhina, E.P., Tolkacheva, A.A. and Korneeva, O.S., 2021, February. Saprolegnosis: dissemination in aquaculture and control methods. In IOP Conference Series: Earth and Environmental Science (Vol. 640, No. 6, p. 062027). IOP Publishing. [DOI:10.1088/1755-1315/640/6/062027]
8. Banaee, M., Sureda, A., Mirvaghefi, A.R. and Ahmadi, K., 2013. Biochemical and histological changes in the liver tissue of rainbow trout (Oncorhynchus mykiss) exposed to sub-lethal concentrations of diazinon. Fish physiology and biochemistry, 39(3), 489-501. [DOI:10.1007/s10695-012-9714-1] [PMID]
9. Banaei, M., MIR, V.A., Rafei, G.R. and Majazi, A.B., 2008. Effect of sub-lethal diazinon concentrations on blood plasma biochemistry, International Journal of Environmental Research. 2(2), 189-198.
10. Barot, J. and Bahadur, A., 2013. Behavioural and histopathological effects of azod e on kidne and gills of Labeo rohita fingerlings. Journal of Environmental Biology, 34, 147-152.
11. Belfroid, A.C., Van Drunen, M., Beek, M.A., Schrap, S.M., Van Gestel, C.A.M. and Van Hattum, B., 1998. Relative risks of transformation products of pesticides for aquatic ecosystems. Science of the Total Environment, 222(3), 167-183. [DOI:10.1016/S0048-9697(98)00298-8] [PMID]
12. Bhagat, J., Singh, N., Nishimura, N. and Shimada, Y., 2021. A comprehensive review on environmental toxicity of azole compounds to fish. Chemosphere, 262, p.128335. [DOI:10.1016/j.chemosphere.2020.128335] [PMID]
13. BILLS, T. D., 1974. Toxicity of formalin, malachite green, and the mixture to four life stages of rainbow trout.
14. Boran, H., Capkin, E., Altinok, I. and Terzi, E., 2012. Assessment of acute toxicity and histopathology of the fungicide captan in rainbow trout. Experimental and Toxicologic Pathology, 64(3), 175-179. [DOI:10.1016/j.etp.2010.08.003] [PMID]
15. Brusle, J. and i Anadon, G.G., 2017. The structure and function of fish liver. In Fish morphology (pp. 77-93). Routledge. [DOI:10.1201/9780203755990-6]
16. Cho, C.Y. and Cowey, C.B., 2017. Rainbow trout, Oncorhynchus mykiss. In Handbook of nutrient requirements of finfish (pp. 131-144). CRC Press.
17. D'Agaro, E., Gibertoni, P. and Esposito, S., 2022. Recent Trends and Economic Aspects in the Rainbow Trout (Oncorhynchus mykiss) Sector. Applied Sciences, 12(17), p. 8773. [DOI:10.3390/app12178773]
18. Dong, J.X., Xu, C., Wang, H., Xiao, Z.L., Gee, S.J., Li, Z.F., Wang, F., Wu, W.J., Shen, Y.D., Yang, J.Y. and Sun, Y.M., 2014. Enhanced sensitive immunoassay: noncompetitive phage anti-immune complex assay for the determination of malachite green and leucomalachite green. Journal of agricultural and food chemistry, 62(34), 8752-8758. [DOI:10.1021/jf5019824] [PMID] [PMCID]
19. Durai, U., Athisuyambulingam, M., Viswambaran, G. and Beevi, F.S.M., 2021. Cytopathological changes of Selected Tissues in Asian Sea Bass, Latescalcarifer (Bloch) Exposed to Mercury. Annals of the Romanian Society for Cell Biology, 1749-1772.
20. Easwaran, M., Raja, N., Eveline, D., Monford Paul Abishek, N., Ahn, J. and Shin, H.J., 2022. Future Therapeutic Approaches to Annihilate Bacterial Fish Diseases in Aquaculture. In Aquaculture Science and Engineering (pp. 463-495). Springer, Singapore. [DOI:10.1007/978-981-19-0817-0_17]
21. El-Neweshy, M.S. and Srag, M.A.A., 2011. Chronic malachite green toxicity in Nile tilapia: Pathological and hematological studies with special reference to quantitative histopathological assessment. Researcher, 3(4), 55-64.
22. Embry, M.R., Belanger, S.E., Braunbeck, T.A., Galay-Burgos, M., Halder, M., Hinton, D.E., Léonard, M.A., Lillicrap, A., Norberg-King, T. and Whale, G., 2010. The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquatic toxicology, 97(2), 79-87. [DOI:10.1016/j.aquatox.2009.12.008] [PMID]
23. Farhadian, S., Hashemi-Shahraki, F., Asadpour, S., Shareghi, B., Shakerian, B., Rafatifard, M. and Firooz, A.R., 2022. Malachite Green, the hazardous materials that can bind to Apo-transferrin and change the iron transfer. International Journal of Biological Macromolecules, 194, 790-799. [DOI:10.1016/j.ijbiomac.2021.11.126] [PMID]
24. Garg, A., Sharma, G.S., Goyal, A.K., Ghosh, G., Si, S.C. and Rath, G., 2020. Recent advances in topical carriers of anti-fungal agents. Heliyon, 6(8), p.e04663. [DOI:10.1016/j.heliyon.2020.e04663] [PMID] [PMCID]
25. Gatlin III, D.M. and Yamamoto, F.Y., 2022. Nutritional supplements and fish health. In Fish Nutrition (pp. 745-773). Academic Press. [DOI:10.1016/B978-0-12-819587-1.00004-5]
26. Ghayyur, S., Khan, M.F., Tabassum, S., Ahmad, M.S., Sajid, M., Badshah, K., Khan, M.A., Ghayyur, S., Khan, N.A., Ahmad, B. and Qamer, S., 2021. A comparative study on the effects of selected pesticides on hemato-biochemistry and tissue histology of freshwater fish Cirrhinus mrigala (Hamilton, 1822). Saudi Journal of Biological Sciences, 28(1), 603-611. [DOI:10.1016/j.sjbs.2020.10.049] [PMID] [PMCID]
27. Ghribi, R., Correia, A.T., Elleuch, B. and Nunes, B., 2019. Testing the impact of contaminated sediments from the southeast marine coast of Tunisia on biota: a multibiomarker approach using the flatfish Solea senegalensis. Environmental Science and Pollution Research, 26(29), 29704-29721. [DOI:10.1007/s11356-019-05872-x] [PMID]
28. Gul, K., Khan, H., Muhammad, N., Ara, B. and Zia, T.U.H., 2021. Removal of toxic malachite green dye from aqueous environment using reduced magnetic graphene oxide as an efficient and reusable adsorbent. Separation Science and Technology, 56(15), 2507-2520. [DOI:10.1080/01496395.2020.1839498]
29. Hajam, Y.A., Kumar, R., Rani, R. and Sharma, P., 2022. Efficacy of different treatments available against bacterial pathogens in fish. In Bacterial Fish Diseases (pp. 379-398). Academic Press. [DOI:10.1016/B978-0-323-85624-9.00013-0]
30. Hardy, R.W., 2002. Rainbow trout, Oncorhynchus mykiss. Nutrient requirements and feeding of finfish for aquaculture, 184-202. [DOI:10.1079/9780851995199.0184]
31. Hidayah, N., Bakar, F.A., Mahyudin, N.A., Faridah, S., Nur-Azura, M.S. and Zaman, M.Z., 2013. Detection of malachite green and leuco-malachite green in fishery industry. International Food Research Journal, 20(4), 1511.
32. Inyang, I.R., Daka, E.R., Ogemba, E.N., 2010. Changes in electrophyte activites Clarias gariepinus exposed to diazinon. J. Trop. Biol. Environ. Sci. 7, 198-200.
33. Islam, M.A., Amin, S.N., Brown, C.L., Juraimi, A.S., Uddin, M.K. and Arshad, A., 2021. Determination of Median Lethal Concentration (LC50) for Endosulfan, Heptachlor and Dieldrin Pesticides to African Catfish, Clarias gariepinus and Their Impact on Its Behavioral Patterns and Histopathological Responses. Toxics, 9(12), p.340. [DOI:10.3390/toxics9120340] [PMID] [PMCID]
34. Jiang, Y., Chen, L., Hu, K., Yu, W., Yang, X. and Lu, L., 2015. Development of a fast ELISA for the specific detection of both leucomalachite green and malachite green. Journal of Ocean University of China, 14(2), 340-344. [DOI:10.1007/s11802-015-2407-5]
35. Jiang, Y., Xie, P. and Liang, G., 2009. Distribution and depuration of the potentially carcinogenic malachite green in tissues of three freshwater farmed Chinese fish with different food habits. Aquaculture, 288(1-2), 1-6. [DOI:10.1016/j.aquaculture.2008.10.025]
36. Jolly, Y.N., Rakib, M.R.J., Islam, M.S., Akter, S., Idris, A.M. and Phoungthong, K., 2022. Potential toxic elements in sediment and fishes of an important fish breeding river in Bangladesh: a preliminary study for ecological and health risks assessment. Toxin reviews, 41(3), 945-958. [DOI:10.1080/15569543.2021.1965624]
37. Krogdahl, Å., Kortner, T.M. and Hardy, R.W., 2022. Antinutrients and adventitious toxins. In Fish Nutrition (pp. 775-821). Academic Press. [DOI:10.1016/B978-0-12-819587-1.00001-X]
38. Li, X., Zheng, S. and Wu, G., 2020. Amino acid metabolism in the kidneys: nutritional and physiological significance. Amino Acids in Nutrition and Health, 71-95. [DOI:10.1007/978-3-030-45328-2_5] [PMID]
39. Maldonado-Miranda, J.J., Castillo-Pérez, Lff.J., Ponce-Hernández, A. and Carranza-Álvarez, C., 2022. Summary of economic losses due to bacterial pathogens in aquaculture industry. In Bacterial Fish Diseases (pp. 399-417). Academic Press. [DOI:10.1016/B978-0-323-85624-9.00023-3]
40. Mao, G., Wang, F., Wang, J., Chen, P., Zhang, X., Zhang, H., Wang, Z. and Song, A., 2021. A sustainable approach for degradation and detoxification of malachite green by an engineered polyphenol oxidase at high temperature. Journal of Cleaner Production, 328, p. 129437. [DOI:10.1016/j.jclepro.2021.129437]
41. MEINERTZ, J., STEHLY, G., GINGERICH, W. and ALLEN, J., 1995. Residues of [14C]‐malachite green in eggs and fry of rainbow trout, Oncorhynchus mykiss (Walbaum), after treatment of eggs. Journal of Fish Diseases, 18, 239-248. [DOI:10.1111/j.1365-2761.1995.tb00299.x]
42. Mohamad, S., Liew, H.J., Zainuddin, R.A., Rahmah, S., Waiho, K., Ghaffar, M.A., Nhan, H.T., Loh, J.Y., Lim, L.S., Chang, Y. and Liang, L., 2021. High environmental temperature and low pH stress alter the gill phenotypic plasticity of Hoven's carp Leptobarbus hoevenii. Journal of fish biology, 99(1), 206-218. [DOI:10.1111/jfb.14712] [PMID]
43. Novotny, L., 2021. Respiratory Tract Disorders in Fishes. Veterinary Clinics: Exotic Animal Practice, 24(2), 267-292. [DOI:10.1016/j.cvex.2021.01.001] [PMID]
44. PEREZ-ESTRADA, L., AGÜERA, A., HERNANDO, M., MALATO, S. and FERNÁNDEZ-ALBA, A., 2008. Photodegradation of malachite green under natural sunlight irradiation: kinetic and toxicity of the transformation products. Chemosphere, 70, 2068-2075. [DOI:10.1016/j.chemosphere.2007.09.008] [PMID]
45. Pipoyan, D., Stepanyan, S., Beglaryan, M., Stepanyan, S. and Mantovani, A., 2020. Health risk assessment of toxicologically relevant residues in emerging countries: A pilot study on Malachite Green residues in farmed freshwater fish of Armenia. Food and Chemical Toxicology, 143, p.111526. [DOI:10.1016/j.fct.2020.111526] [PMID]
46. Roberts, H. and Palmeiro, B.S., 2008. Toxicology of aquarium fish. Veterinary clinics of North America: exotic animal practice, 11(2), 359-374. [DOI:10.1016/j.cvex.2007.12.005] [PMID]
47. Shahrani, M., Azari Takami, G., Sharif Rohani, M., Motallebi, A. and Yazdani Sadati, M., 2021. Antifungal effects of alcoholic extract of Thymus vulgaris on Siberian sturgeon (Acipenser baerii) eggs compared with malachite green effects. Iranian Journal of Fisheries Sciences, 20(1), 218-229.
48. Sharma, R., Jindal, R. and Faggio, C., 2021. Cassia fistula ameliorates chronic toxicity of cypermethrin in Catla catla. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 248, p.109113. [DOI:10.1016/j.cbpc.2021.109113] [PMID]
49. Shivalingu, T. and Jayabhaye, U.M., 2021. Effect of Organochlorine Pesticides on Liver Histopathology of the Common Carp Cyprinus carpio. Annals of the Romanian Society for Cell Biology, 25(6), 19574-19583.
50. Shourbela, R., Tohamy, H. and El-Hawarry, W., 2020. Induced spawning of African catfish (Clarias gariepinus Burchell 1822) after pre-spawning prophylactic disinfection; the breeding performance and tissue histopathological alterations are under scope. Iranian Journal of Fisheries Sciences, 19(1), 309-324.
51. Shukla, D., Das, M., Kasade, D., Pandey, M., Dubey, A.K., Yadav, S.K. and Parmar, A.S., 2020. Sandalwood-derived carbon quantum dots as bioimaging tools to investigate the toxicological effects of malachite green in model organisms. Chemosphere, 248, p.125998. [DOI:10.1016/j.chemosphere.2020.125998] [PMID]
52. Sinha, R., Jindal, R. and Faggio, C., 2021. Protective effect of Emblica officinalis in Cyprinus carpio against hepatotoxicity induced by malachite green: Ultrastructural and molecular analysis. Applied sciences, 11(8), p.3507. [DOI:10.3390/app11083507]
53. Southgate, P.J. and Branson, E.J., 2001. Toxins. In BSAVA Manual of Ornamental Fish (pp. 213-218). BSAVA Library. [DOI:10.22233/9781910443538.26]
54. Srivastava A.K., Sinha R., Singh N.D., Srivastava S.D. (1998): Histopathological changes in a freshwater catfish, Heteropneustes fossilis following exposure to malachite green. Proceedings of the National Academy of Sciences of India. Section B. Biological Sciences, 68, 253-257.
55. Srivastava S. J., Singh N.D., Srivastava A. K. and Sinha Ranjana. (1995): Acute toxicity of malachite green and its effect on certain blood parameters of a catfish, Heteropneustes fossilis. Aquatic toxicology, 31(3), 241-247. [DOI:10.1016/0166-445X(94)00061-T]
56. Srivastava S., Sinha R., Roy D. (2004): Toxicological effects of malachite green. Aquatic Toxicology, 66, 319-329. [DOI:10.1016/j.aquatox.2003.09.008] [PMID]
57. Sudova, E., Machova, J., Svobodova, Z. and Vesely, T., 2007. Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review. Veterinarni medicina, 52(12), p.527. [DOI:10.17221/2027-VETMED]
58. Sun, Y., Zhang, Y., Li, W., Zhang, W., Xu, Z., Dai, M. and Zhao, G., 2021. Combination of the endophytic manganese-oxidizing bacterium Pantoea eucrina SS01 and biogenic Mn oxides: An efficient and sustainable complex in degradation and detoxification of malachite green. Chemosphere, 280, p.130785. [DOI:10.1016/j.chemosphere.2021.130785] [PMID]
59. Töre, Y., Ustaoğlu, F., Tepe, Y. and Kalipci, E., 2021. Levels of toxic metals in edible fish species of the Tigris River (Turkey); threat to public health. Ecological Indicators, 123, p.107361. [DOI:10.1016/j.ecolind.2021.107361]
60. Van Heerden, E., Van Vuuren, JHJ and Steyn, G., 1995. LC50 determination for malachite green and formalin on rainbow trout (Oncorhynchus mykiss) juveniles. Water SA, 21(1), 87-94.
61. Viana, H.C., Jesus, W.B., Silva, S.K.L., Jorge, M.B., Santos, D.M.S. and Neta, R.N.F., 2021. Aggregation of hepatic melanomacrophage centers in S. herzbergii (Pisces, Ariidae) as indicators of environmental change and well-being. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 73, 868-876. [DOI:10.1590/1678-4162-12327]
62. Viana, N.P., da Silva, L.C.M., Portruneli, N., Soares, M.P., Cardoso, I.L., Bonansea, R.I., Goulart, B.V., Montagner, C.C., Espíndola, E.L.G., Wunderlin, D.A. and Fernandes, M.N., 2022. Bioconcentration and toxicological impacts of fipronil and 2, 4-D commercial formulations (single and in mixture) in the tropical fish, Danio rerio. Environmental Science and Pollution Research, 29(8), 11685-11698. [DOI:10.1007/s11356-021-16352-6] [PMID]
63. YADAV, R. and SINGH, J., 2011. Effect of malachite green on the skin epidermis of a gold fish Carassius auratus. Journal of Experimental Zoology, India, 14, 273-279.
64. Yalsuyi, A.M., Vajargah, M.F., Hajimoralo, A., Galangas, M.M., Prokic, M. and Faggio, C., 2021. Can Povidone-Iodine (Betadine) Act On The Survival Rate and Gill Tissue Structure of Oranda Goldfish (Carassius Auratus)?. [DOI:10.21203/rs.3.rs-867944/v1] [PMCID]



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heydari M, Yaghoobi Z, Hosseini S, Mahdavi J, Movahedinia A, Amini Z et al . Research Article: Determination of median lethal concentration (LC50) and histopathological effects of malachite green on Oncorhynchus mykiss. Sustainable Aquaculture. Health. Management. J. 2022; 8 (1) :41-60
URL: http://ijaah.ir/article-1-256-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 1 (2022) Back to browse issues page
Persian site map - English site map - Created in 0.05 seconds with 28 queries by YEKTAWEB 4540