Prevalence and intensity of protozoan ectoparasite of the white leg shrimp (\textit{penaeus indicus}) in Helleh site, South of Iran

S Kakoolaki1 and M Afsharnasab1

1Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Org., Tehran, Iran

Received: May 2015 Accepted: October 2015

Abstract

Development of shrimp farming has been associated with the incidence of fatal diseases including viral, bacterial and protozoan parasites of shrimp. Our study was aimed to present a status of several important protozoan parasites of \textit{Litopenaeus vannamei} in cultured earthen ponds in Iran during the period of 2011-12. One hundred live shrimp were randomly prepared from the Shrimp Helleh Station in south of Iran. Prevalence and intensity were two important indices that calculated in our research. They were scraping, putting on clean slides and examined under microscope to observe the protozoan parasites. \textit{Zoothamnium} sp. is more prevalent pathogen among \textit{Peritrichous ciliates} (79 to 88) in pleopods. \textit{Acineta} sp. was less prevalent in our isolations neither in pleopods nor in gills. It was concluded that, \textit{Peritrichous ciliates} are more frequent ciliates causing mortality in cultured shrimps at high density in higher temperature and ammonia.

Keywords: \textit{Penaeus indicus}, protozoan, epibiont ciliates, epicommensal.

Introduction

In recent decades, Development of shrimp farming has been associated with the incidence of fatal diseases including viral, bacterial and protozoan parasites of shrimp (Lightner 1996). Therefore, shrimp farmers have been suffering from losing the production (Afsharnasab 2012; Kakoolaki, Sharifpour, Sharifrohani, Ebrahinzadeh Mousavi, Afsharnasab, Hoghoughirad, Dashtiennasab & Nezamabadi 2013). Shrimp production in Iran is not exempt from these global fluctuations. When shrimp production in 2007 fell by half, the farmers shifted the cultured species from \textit{Fenneropenaeus indicus} to \textit{Litopenaeus vannamei} to reach 20,000 tons in 2013 as highest record (Kakoolaki et al. 2013). The exoskeleton of crustaceans provides suitable organic substrates for many species of epibiont ciliates, especially suctori- ans, chonotrichs, and peritrichs (Mayen-Estrada R. & Aladro-Lubel M. A. 2002).

Some researchers have reported \textit{Peritrichous ciliates} parasites such as \textit{Zoothamnium} sp., \textit{Epistylis} sp., \textit{Acineta} sp. and \textit{Vorticella} sp. in which exoskeleton are the target tissue (Jalali Jafari 1990; Kakoolaki 1997; Tamjidi 1995). Protozoan parasites and commensals occur both inside and outside the host body. \textit{Zoothamnium} sp. and \textit{Vorticella} sp. are ecto-parasites and gregarines is endo-parasite (Chakraborti & Bandyapadhyay 2011). Quantity of Peritrichs can rapidly increase, attach and feed on the exoskeleton and gill tissues due to poor quality of either earthen or hatchery pond water (Jalali Jafari 1990; Kakoolaki 1997). Overstreet (1973) showed that there is a putative relationship between the epibiont ciliate, \textit{Zoothamnium} sp. and mortality of shrimp following stress. Their abundant presence can interfere with the breathing and mobility of the host (Jayasree, Janakiram & Madhavi 2001). \textit{Zoothamnium} sp. are at their peak during climate change and increasing the concentration of nitrite or nitrate and can be controlled by salinity changes or habitat (Jayasree et al. 2001). \textit{Zoothamnium} is a frequent inhabitant of the gill surfaces of shrimp in ponds with low oxygen content and heavily infested shrimp can suffocate. Sur-
face-settling protozoa occasionally cause problems in shrimp hatcheries when larval shrimp become overburdened and are unable to swim normally. As protozoa continuously multiply in numbers, shrimp acquire an increasing burden until shedding of the cuticle provides relief. Members of one unique group of protozoa, the apostome ciliates, have a resting stage that will settle on shrimp surfaces. When the crustacean molts, the protozoan releases and completes the life cycle within the shed cuticle before entering the stage on a new crustacean (Johnson 1990).

In this paper, we will attempt to present the status of several important protozoan parasites of shrimp in cultured earthen ponds in Iran.

Materials and Methods

Sampling
The present study was done during the period of 2011 to 2012. One hundred live shrimp Litopenaus vannamei were randomly prepared from the Shrimp Helleh Station in south of Iran. They were transferred to National Shrimp Research Center in Bushehr province and then acclimated and reared under the optimum condition of water quality (Kakoolaki, Soltani, Ebrahimzadeh Mousavi, Sharifpour, Mirzargar, Afsharnasab & Motalebi 2011).

Isolation of pathogens
Animals were scraping from Exoskeleton and gills were taken on clean slides. The smeared slides were air dried, fixed in acetone free methanol and stained with Giemsa or directly wet smeared. The slides were examined under microscope to observe the protozoan parasites. From the collected data, prevalence and intensity of infection by each species of parasites were determined.

Prevalence and Intensity of infection
One hundred of shrimp were dedicated for collecting the ecto-parasites to identify the prevalence and intensity of infection.

Prevalence of infection was calculated using following formula:

\[
P = \frac{N \text{ of infected shrimps}}{\text{all shrimps in an aquarium}} \times 100\%
\]

Where P is prevalence in an aquarium and N is number that given as Mean±SD.

Intensity of infection was analyzed as follows: (Malolahi A. & Mokhayer B. 2001)

$I = \text{If the number of observed parasites under light microscope were 5-50, 51-100 and more than 100, the intensity named mild, moderate and severe, respectively.}$

Statistical analysis
Cross tabulation, accompanying with Kendall’s tau-b was used to determine the relation between rows and columns with the probability of 95%.

Results

In cross-tabulation that was made between 2 subgroups of weight (under and above 15 g) and 6 groups containing 3 subgroups, only the relation between weight and Zoothamnium in pleopods was significant (Kendall’s tau-b: .003) and with other groups were not significant (p>0.05). Based on the table 1, it seems 66.7 % of infected pleopods were in the shrimp with the weight of less than 15 g.

In cross-tabulation is given in Table 2, there is a significant relationship (Kendall’s tau-b: .026) between the occurrence of Epistylis sp. either in pleopods and gills of infected shrimp. But lesser or absent of severity in gills had significant relation with same protozoa in pleopods. According to the Table 2, it seems Epistylis were observed more in pleopods in comparison to gills. Based on the Table 3, there was a significant relationship (Kendall’s tau-b: .048) between the occurrence of Zoothamnium sp. in pleopods and Acineta sp. in gills of infected shrimps. It showed that increasing the incidence of Zoothamnium sp. in pleopods has significant relation with lesser incidence of Acineta sp. of gills.

The prevalences of Zoothamnium sp., Epistylis sp. and Acineta sp. in pleopods were calculated as follows:

\[
P (\text{Zoothamnium sp.}) = \frac{79}{100} \times 100\%, P = 79\% (n: 100)
\]

\[
P (\text{Epistylis sp.}) = \frac{61}{100} \times 100\%, P = 61\% (n: 100)
\]

\[
P (\text{Acineta sp.}) = \frac{7}{100} \times 100\%, P = 2\% (n: 100)
\]

The prevalences of Zoothamnium sp. , Epistylis sp. and Acineta sp. in gills were calculated as follows:

\[
P (\text{Zoothamnium sp.}) = \frac{79}{100} \times 100\%, P = 79\% (n: 100)
\]

\[
P (\text{Epistylis sp.}) = \frac{61}{100} \times 100\%, P = 61\% (n: 100)
\]

\[
P (\text{Acineta sp.}) = \frac{7}{100} \times 100\%, P = 2\% (n: 100)
\]
The figures of common and non-common per-trichous ciliates observed in shrimp are given as Tables 1-6. Whole figures show a common stalk for attaching to the host tissue.

Discussion

Our study was aimed to identify the ecto-parasite species and determined the prevalence and intensity of the infection in *Litopenaeus vannamei* cultured in Iran. According to the results obtained, the prevalence of *Zoothamnium* sp. was higher in comparison to *Acineta* sp. or *Epistylis* sp. In the other view, the peritrichous ciliates were more common in pleopods but gills. It seems shrimp with lesser weights were more susceptible to *Zoothamnium* sp. but no significant difference was observed between severities across the groups (Table 1). According to the results of prevalences (Fig. 3), *Acineta* sp. was less prevalent in our isolations neither in pleopods nor in gills. Based on Table 2, there

Table 1 Cross tabulation between weight groups and *Zoothamnium* sp. observed on pleopods and gills.

<table>
<thead>
<tr>
<th>Weight grouping</th>
<th>Count</th>
<th>Severe</th>
<th>moderate</th>
<th>mild</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>25.0%</td>
<td>22.2%</td>
<td>19.4%</td>
<td>66.7%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>25.0%</td>
<td>8.3%</td>
<td>.0%</td>
<td>33.3%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18</td>
<td>11</td>
<td>7</td>
<td>36</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>50.0%</td>
<td>30.6%</td>
<td>19.4%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Table 2 Cross tabulation between *Epistylis* sp. in Pleopod groups and *Epistylis* sp. observed in Gills.

<table>
<thead>
<tr>
<th>Epistylis in Gills</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epistylis in Pleopods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>% of Total</td>
<td>25.0%</td>
<td>13.9%</td>
<td>38.9%</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>% of Total</td>
<td>22.2%</td>
<td>8.3%</td>
<td>30.6%</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>% of Total</td>
<td>5.6%</td>
<td>25.0%</td>
<td>30.6%</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>17</td>
<td>36</td>
</tr>
<tr>
<td>% of Total</td>
<td>52.8%</td>
<td>47.2%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Table 3 Cross tabulation between *Zoothamnium* sp. in Pleopod severity groups and *Acineta* sp. severity groups observed in Gills.

<table>
<thead>
<tr>
<th>Acineta in gills</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoothamnium in Pleopods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>1</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>% of Total</td>
<td>2.8%</td>
<td>47.2%</td>
<td>50.0%</td>
</tr>
<tr>
<td>moderate</td>
<td>2</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>% of Total</td>
<td>5.6%</td>
<td>25.0%</td>
<td>30.6%</td>
</tr>
<tr>
<td>weak</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>% of Total</td>
<td>8.3%</td>
<td>11.1%</td>
<td>19.4%</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>% of Total</td>
<td>16.7%</td>
<td>83.3%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

and *Acineta* sp. in gills are given as follows:

- P (*Zoothamnium* sp.)= 12/100×100, P= 12 % (n: 100)
- P (*Epistylis* sp.)= 7/100×100, P= 7 % (n: 100)
- P (*Acineta* sp.)= 5/100×100, P= 5 % (n: 100)
is a matched trend between the severity of *Zoothamnium* sp. in pleopods and gills so that while increasing of the infection became more in pleopods, an increasing trend of the parasite incidence also was observed in gills. On the other hand, increasing of severity of *Zoothamnium* sp. in pleopods was contrarily matched with *Acineta* sp. in gills. Similar to the result of Abedian & Ebrahimi (2006) our results...
showed that Zoothamnium sp. is more prevalent pathogen among peritrichous ciliates (88.66% to 79%) in pleopods. The least value for shrimp ciliated infections belong to Acineta with 2% of shrimp pleopods. This result is contrary to the result of Abedian & Ebrahimi (2006) that recorded Vorticella sp. has least prevalence among ciliates (0.24%).

In another survey (Mayen-Estrada R. & Aladro-Lubel M. A. 2002) Vorticella sp. was the most prevalent peritrichous for crayfish attached to pereiopods and gills. This result is matched to the result of Chakraborti & Bandyapadhyay (2011) that confirmed Vorticella sp. the most frequent ciliates from tiger shrimp. They showed the infection increase at 29-31°C and decrease above or below this degree. Thus, an optimum temperature of 29–31°C is required for growth and survival of the protozoan parasites. Since they are epibionts, the infection caused by them at a low density is non pathogenic but heavy infection may cause fouling of gills and appendages. They may even cause death since they interfere with respiration and locomotion (Overstreet 1973).

It is concluded the peritrichous ciliates are more frequent ciliates causing mortality in cultured shrimps at high density in higher temperature and amonia compounds.

References

Afsharnasab M. (2012) Rewiev of WSD in Iran (Past, Present, Future) and the effect on shrimp production Paper present in 17th Iranian Veterinary Congress, Tehran, Iran 28-30 April.

Downloaded from ijaah.ir at 21:43 +0330 on Sunday September 22nd 2019
S Kakoolaki et al., Protozoan ectoparasite of white leg shrimp

Overstreet R.M. (1973) Parasites of some penaeid shrimp with emphasis on reared hosts. *Aquaculture* 2, 105-140.

شیوع و شدت تک یاخته‌ها جلدی میگو پا سفید سایت حل، جنوب ایران

شاهرود کاکلی،* مهند افشارنرابی

۱ بهشتی‌پور، بیماری‌های آبزیان، سازمان تحقیقات آموزش و ترویج کشاورزی، موسسه تحقیقات علوم شیلاتی کشور، پیکانشهر، سروآزاد

چکیده
توسعه بروز میگو پا بر روی بیماری‌های کشنده از جمله ویروسی، باکتریایی و تک یاخته‌ای ا-ngل میگو همراه بوده است. مطالعه مراحل و پیشرفت‌های این بیماری در دو ساله ۲۰۱۱-۲۰۱۲ شاه می‌دهد. بنابراین، میگوی دیگری از جمله زنده که طوری تصادفی اینگلگونه حل خپارگی را در جنوب ایران تهیه شد. شیوع و شدت نشان می‌دهد که تک یاخته‌ها بیشتر در این تحقیق به کار گرفته شد. ابتدا از ناحیه آبیارنشست و جایگاه کربن می‌باشد که گزارش شده‌اند. نگاه‌های لایه‌ای به نهایی کمی و گفتمان در زیرین محیط‌ها در مورد میگوی در این مطالعه انجام و به عنوان پایه‌گذاری‌ها ترک در راه‌داری شده با همبستگی به‌عنوان یک با همبستگی بین میگویی را در این مطالعه انجام و به عنوان پایه‌گذاری‌ها ترک در راه‌داری شده با همبستگی. زیرین محیط‌ها در این مطالعه انجام و به عنوان پایه‌گذاری‌ها ترک در راه‌داری شده با همبستگی بین میگویی را در این مطالعه انجام و به عنوان پایه‌گذاری‌ها ترک در راه‌داری شده با همبستگی. البته این طرح در راستای انتخاب‌ها و شیوع شدت.

bsh443@gmail.com

*نویسنده مسئول